1887

Abstract

is an intracellular dimorphic fungus that can cause a fatal disseminated disease in human immunodeficiency virus-infected patients. The factors that affect the pathogenicity of this fungus remain unclear. Here, we report the isolation and characterization of the cDNA and genomic clones encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in . Phylogenetic analysis of GAPDH amino acid sequences demonstrated the evolutionary relationship of to other fungi, including the intracellular pathogen . To assess the central importance of phagocytic cells in defence against infection, we used Northern blotting to investigate the response of the isocitrate lyase-encoding gene () and to nutrient deprivation inside macrophages. The results revealed that after macrophage internalization, the gene involved in the glyoxylate cycle, , showed higher expression levels as early as 2 h from the start of co-incubation, and the differential expression could be observed again at 8 h after infection. In contrast, the expression of was downregulated in the yeast phase, as well as during macrophage infection after 2, 4 and 8 h of infection. The induction of was shown to be coordinated with the downregulation of the glycolytic gene, implying that the cytoplasmic environment of macrophages is deficient in glucose and the glyoxylate pathway could be used by this pathogen to allow subsistence on two-carbon compounds within the host cell following its intracellular persistence.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.2008/002832-0
2008-11-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/11/1322.html?itemId=/content/journal/jmm/10.1099/jmm.0.2008/002832-0&mimeType=html&fmt=ahah

References

  1. Barbosa, M. S., Cunha Passos, D. A., Felipe, M. S., Jesuíno, R. S., Pereira, M. & de Almeida Soares, C. M. ( 2004; ). The glyceraldehyde-3-phosphate dehydrogenase homologue is differentially regulated in phases of Paracoccidioides brasiliensis: molecular and phylogenetic analysis. Fungal Genet Biol 41, 667–675.[CrossRef]
    [Google Scholar]
  2. Barbosa, M. S., Báo, S. N., Andreotti, P. F., de Faria, F. P., Felipe, M. S., dos Santos Feitosa, L., Mendes-Giannini, M. J. & de Almeida Soares, C. M. ( 2006; ). Glyceraldehyde-3-phosphate dehydrogenase of Paracoccidioides brasiliensis is a cell surface protein involved in fungal adhesion to extracellular matrix proteins and interaction with cells. Infect Immun 74, 382–389.[CrossRef]
    [Google Scholar]
  3. Barelle, C. J., Priest, C. L., Maccallum, D. M., Gow, N. A. R., Odds, F. C. & Brown, A. J. P. ( 2006; ). Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell Microbiol 8, 961–971.[CrossRef]
    [Google Scholar]
  4. Breathnach, R. & Chambon, P. ( 1981; ). Organization and expression of eukaryotic split genes coding for proteins. Annu Rev Biochem 50, 349–383.[CrossRef]
    [Google Scholar]
  5. Cánovas, D. & Andrianopoulos, A. ( 2006; ). Developmental regulation of the glyoxylate cycle in the human pathogen Penicillium marneffei. Mol Microbiol 62, 1725–1738.[CrossRef]
    [Google Scholar]
  6. Chandler, J. M., Treece, E. R., Trenary, H. R., Brenneman, J. L., Flickner, T. J., Frommelt, J. L., Oo, Z. M., Patterson, M. M., Rundle, W. T. & other authors ( 2008; ). Protein profiling of the dimorphic, pathogenic fungus, Penicillium marneffei. Proteome Sci 6, 17 [CrossRef]
    [Google Scholar]
  7. Chatterjee, S. S., Hossain, H., Otten, S., Kuenne, C., Kuchmina, K., Machata, S., Domann, E., Chakraborty, T. & Hain, T. ( 2006; ). Intracellular gene expression profile of Listeria monocytogenes. Infect Immun 74, 1323–1328.[CrossRef]
    [Google Scholar]
  8. Cooper, C. R., Jr & Haycocks, N. G. ( 2000; ). Penicillium marneffei: an insurgent species among the penicillia. J Eukaryot Microbiol 47, 24–28.[CrossRef]
    [Google Scholar]
  9. Cooper, C. R., Jr & McGinnis, M. R. ( 1997; ). Penicillium marneffei, an emerging acquired immunodeficiency syndrome-related pathogen. Arch Pathol Lab Med 121, 798–804.
    [Google Scholar]
  10. Cooper, C. R., Jr & Vanittanakom, N. ( 2008; ). Insights into the pathogenicity of Penicillium marneffei. Future Microbiol 3, 43–55.[CrossRef]
    [Google Scholar]
  11. Derengowski, L. S., Tavares, A. H., Silva, S., Procópio, L. S., Felipe, M. S. S. & Silva-Pereira, I. ( 2008; ). Upregulation of glyoxylate cycle genes upon Paracoccidioides brasiliensis internalization by murine macrophages and in vitro nutritional stress condition. Med Mycol 46, 125–134.[CrossRef]
    [Google Scholar]
  12. Fan, W., Kraus, P. R., Boily, M. J. & Heitman, J. ( 2005; ). Cryptococcus neoformans gene expression during murine macrophage infection. Eukaryot Cell 4, 1420–1433.[CrossRef]
    [Google Scholar]
  13. Gil-Navarro, I., Gil, M. L., Casanova, M., O'Connor, J. E., Martínez, J. P. & Gozalbo, D. ( 1997; ). The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is a surface antigen. J Bacteriol 179, 4992–4999.
    [Google Scholar]
  14. Goudot-Crozel, V., Caillol, D., Djabali, M. & Dessein, A. J. ( 1989; ). The major parasite surface antigen associated with human resistance to schistosomiasis is a 37 kDa glyceraldehyde-3-P-dehydrogenase. J Exp Med 170, 2065–2080.[CrossRef]
    [Google Scholar]
  15. Gozalbo, D., Gil-Navarro, I., Azorín, I., Renau-Piqueras, J., Martínez, J. P. & Gil, M. L. ( 1998; ). The cell wall-associated glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is also a fibronectin and laminin binding protein. Infect Immun 66, 2052–2059.
    [Google Scholar]
  16. Graham, J. E. & Clark-Curtiss, J. E. ( 1999; ). Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci U S A 96, 11554–11559.[CrossRef]
    [Google Scholar]
  17. Gurr, S. J., Unkles, S. E. & Kinghorn, J. R. ( 1987; ). The structure and organization of nuclear genes of filamentous fungi. In Gene Structure in Eukaryotic Microbes, pp. 93–139. Edited by J. R. Kinghorn. Oxford: IRL Press.
  18. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  19. Kupfer, D. M., Drabenstot, S. D., Buchanan, K. L., Lai, H., Zhu, H., Dyer, D. W., Roe, B. A. & Murphy, J. W. ( 2004; ). Introns and splicing elements of five diverse fungi. Eukaryot Cell 3, 1088–1100.[CrossRef]
    [Google Scholar]
  20. Liu, H., Xi, L., Zhang, J., Li, X., Liu, X., Lu, C. & Sun, J. ( 2007; ). Identifying differentially expressed genes in the dimorphic fungus Penicillium marneffei by suppression subtractive hybridization. FEMS Microbiol Lett 270, 97–103.[CrossRef]
    [Google Scholar]
  21. Lorenz, M. C. & Fink, G. R. ( 2001; ). The glyoxylate cycle is required for fungal virulence. Nature 412, 83–86.[CrossRef]
    [Google Scholar]
  22. Lorenz, M. C., Bender, J. A. & Fink, G. R. ( 2004; ). Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell 3, 1076–1087.[CrossRef]
    [Google Scholar]
  23. McDonald, L. J. & Moss, J. ( 1993; ). Stimulation by nitric oxide of an NAD linkage to glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci U S A 90, 6238–6241.[CrossRef]
    [Google Scholar]
  24. Modun, B. & Williams, P. ( 1999; ). The staphylococcal transferrin-binding protein is a cell wall glyceraldehyde-3-phosphate dehydrogenase. Infect Immun 67, 1086–1092.
    [Google Scholar]
  25. Modun, B., Morrissey, J. & Williams, P. ( 2000; ). The staphylococcal transferrin receptor: a glycolytic enzyme with novel functions. Trends Microbiol 8, 231–237.[CrossRef]
    [Google Scholar]
  26. Mount, S. M. ( 1982; ). A catalogue of splice junction sequences. Nucleic Acids Res 10, 459–472.[CrossRef]
    [Google Scholar]
  27. Muñoz-Elías, E. J. & McKinney, J. D. ( 2005; ). Mycobacterium. tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11, 638–644.[CrossRef]
    [Google Scholar]
  28. Pancholi, V. & Chhatwal, G. S. ( 2003; ). Housekeeping enzymes as virulence factors for pathogens. Int J Med Microbiol 293, 391–401.[CrossRef]
    [Google Scholar]
  29. Pongpom, P., Cooper, C. R., Jr, & Vanittanakom, N. ( 2005; ). Isolation and characterization of a catalase-peroxidase gene from the pathogenic fungus, Penicillium marneffei. Med Mycol 43, 403–411.[CrossRef]
    [Google Scholar]
  30. Ridder, R. & Osiewacz, H. D. ( 1992; ). Sequence analysis of the gene coding for glyceraldehyde-3-phosphate dehydrogenase (gpd) of Podospora anserina: use of homologous regulatory sequences to improve transformation efficiency. Curr Genet 21, 207–213.[CrossRef]
    [Google Scholar]
  31. Schnappinger, D., Ehrt, S., Voskuil, M. I., Liu, Y., Mangan, J. A., Monahan, I. M., Dolganov, G., Efron, B., Butcher, P. D. & other authors ( 2003; ). Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198, 693–704.[CrossRef]
    [Google Scholar]
  32. Singh, R. & Green, M. R. ( 1993; ). Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Science 259, 365–368.[CrossRef]
    [Google Scholar]
  33. Sirover, M. A. ( 1997; ). Role of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in normal cell function and in cell pathology. J Cell Biochem 66, 133–140.[CrossRef]
    [Google Scholar]
  34. Sirover, M. A. ( 1999; ). New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta 1432, 159–184.[CrossRef]
    [Google Scholar]
  35. Smith, T. L. ( 1989; ). Disparate evolution of yeasts and filamentous fungi indicated by phylogenetic analysis of glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci U S A 86, 7063–7066.[CrossRef]
    [Google Scholar]
  36. Tavares, A. H. F. P., Silva, S. S., Dantas, A., Campos, E. G., Andrade, R. V., Maranhão, A. Q., Brígido, M. M., Passos-Silva, D. G., Fachin, A. L. & other authors ( 2007; ). Early transcriptional response of Paracoccidioides brasiliensis upon internalization by murine macrophages. Microbes Infect 9, 583–590.[CrossRef]
    [Google Scholar]
  37. Taylor, J. M. & Heinrichs, D. E. ( 2002; ). Transferrin binding in Staphylococcus aureus: involvement of a cell wall-anchored protein. Mol Microbiol 43, 1603–1614.[CrossRef]
    [Google Scholar]
  38. Thirach, S., Cooper, C. R., Jr, Vanittanakom, P. & Vanittanakom, N. ( 2007; ). The copper, zinc superoxide dismutase gene of Penicillium marneffei: cloning, characterization, and differential expression during phase transition and macrophage infection. Med Mycol 45, 409–417.[CrossRef]
    [Google Scholar]
  39. Vanittanakom, N., Vanittanakom, P. & Hay, R. J. ( 2002; ). Rapid identification of Penicillium marneffei by PCR-based detection of specific sequences on the rRNA gene. J Clin Microbiol 40, 1739–1742.[CrossRef]
    [Google Scholar]
  40. Vanittanakom, N., Cooper, C. R., Jr, Fisher, M. C. & Sirisanthana, T. ( 2006; ). Penicillium marneffei infection and recent advances in the epidemiology and molecular biology aspects. Clin Microbiol Rev 19, 95–110.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.2008/002832-0
Loading
/content/journal/jmm/10.1099/jmm.0.2008/002832-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 1322 - 1328

Nucleotide and deduced amino acid sequences of the gene from . The G1–G4 oligonucleotides are marked by arrows. Nucleotides in upper-case letters indicate the exons, while lower-case letters indicate the introns. Nucleotides in bold italics represent the conserved 5' and 3' consensus splice sequences of each intron. The internal splice (lariat) sequences are indicated by boxes around the nucleotides. Start and stop codons are underlined. The deduced amino acid sequence is shown above the nucleotide sequence (single letter code). The sites putatively related to the inorganic phosphate binding are indicated by boxes around the amino acids. Amino acids putatively related to the NAD binding are shown in bold italics. The substrate-binding site is marked with a bracket. Amino acids potentially associated with catalysis are shown in bold. Circles mark the residues related to the binding to the phosphate from the substrate. Asterisks indicate the putative phosphorylation sites. [ PDF file] (325 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error