1887

Abstract

Currently, serovar Brandenburg is identified serologically on the basis of two surface antigens, somatic (O) polysaccharide and flagellar (H) proteins. This procedure is time-consuming and requires expensive typing reagents. To overcome these problems, a PCR method was developed and validated for the identification of Brandenburg. Portions of the , (B), and genes were targeted for amplification using four pairs of oligonucleotide primers. To validate the assay, genomic DNA from an array of 72 strains representing 28 serotypes and 5 non- strains from 4 different genera was subjected to PCR. The four targeted genes were correctly amplified only from Brandenburg. These results indicate that this PCR assay is a simple, rapid, reliable and reproducible method for the identification of Brandenburg that will aid in surveillance, prevention and control of this pathogen.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.2008/002337-0
2008-10-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/10/1223.html?itemId=/content/journal/jmm/10.1099/jmm.0.2008/002337-0&mimeType=html&fmt=ahah

References

  1. Bäumler A. J., Tsolis R. M., Ficht T. A., Adams L. G. 1998; Evolution of host adaptation in Salmonella enterica . Infect Immun 66:4579–4587
    [Google Scholar]
  2. CDC 2007 Salmonella Surveillance: Annual Summary, 2005 Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention;
    [Google Scholar]
  3. Clark G. 2000 Salmonella Brandenburg–update 2000. In Vetscript (December) pp 16–17 Wellington: New Zealand Veterinary Association;
    [Google Scholar]
  4. Clark R. G., Fenwick S. G., Nicol C. M., Marchant R. M., Swanney S., Gill J. M., Holmes J. D., Leyland M., Davies P. R. 2004; Salmonella Brandenburg – emergence of a new strain affecting stock and humans in the South Island of New Zealand. N Z Vet J 52:26–36 [CrossRef]
    [Google Scholar]
  5. Collazo C. M., Galán J. E. 1997; The invasion-associated type-III protein secretion system in Salmonella – a review. Gene 192:51–59 [CrossRef]
    [Google Scholar]
  6. Echeita M. A., Herrera S., Garaizar J., Usera M. A. 2002; Multiplex PCR-based detection and identification of the most common Salmonella second-phase flagellar antigens. Res Microbiol 153:107–113 [CrossRef]
    [Google Scholar]
  7. Farrell J. J., Doyle L. J., Addison R. M., Reller L. B., Hall G. S., Procop G. W. 2005; Broad-range (pan) Salmonella and Salmonella serotype Typhi-specific real-time PCR assays: potential tools for the clinical microbiologist. Am J Clin Pathol 123:339–345 [CrossRef]
    [Google Scholar]
  8. Fitzgerald C., Sherwood R., Gheesling L. L., Brenner F. W., Fields P. I. 2003; Molecular analysis of the rfb O antigen gene cluster of Salmonella enterica serogroup O : 6,14 and development of a serogroup-specific PCR assay. Appl Environ Microbiol 69:6099–6105 [CrossRef]
    [Google Scholar]
  9. Galán J. E. 1996; Molecular genetic bases of Salmonella entry into host cells. Mol Microbiol 20:263–271 [CrossRef]
    [Google Scholar]
  10. Gillespie B. E., Mathew A. G., Draughon F. A., Jayarao B. M., Oliver S. P. 2003; Detection of Salmonella enterica somatic groups C1 and E1 by PCR-enzyme-linked immunosorbent assay. J Food Prot 66:2367–2370
    [Google Scholar]
  11. Ginocchio C. C., Rahn K., Clarke R. C., Galán J. E. 1997; Naturally occurring deletions in the centisome 63 pathogenicity island of environmental isolates of Salmonella spp. Infect Immun 65:1267–1272
    [Google Scholar]
  12. Hoorfar J. 1999; EU seeking to validate and standardize PCR testing of food pathogens. ASM News 65:799
    [Google Scholar]
  13. Iijima Y., Asako N. T., Aihara M., Hayashi K. 2004; Improvement in the detection rate of diarrhoeagenic bacteria in human stool specimens by a rapid real-time PCR assay. J Med Microbiol 53:617–622 [CrossRef]
    [Google Scholar]
  14. Joys T. M. 1985; The covalent structure of the phase-1flagellar filament protein of Salmonella typhimurium and its comparison with other flagellins. J Biol Chem 260:15758–15761
    [Google Scholar]
  15. Kumar S., Balakrishna K., Batra H. V. 2006; Detection of Salmonella enterica serovar Typhi ( S . Typhi) by selective amplification of invA, viaB, fliC-d and prt genes by polymerase chain reaction in mutiplex format. Lett Appl Microbiol 42:149–154 [CrossRef]
    [Google Scholar]
  16. Lampel K. A., Keasler S. P., Hanes D. E. 1996; Specific detection of Salmonella enterica serotype Enteritidis using the polymerase chain reaction. Epidemiol Infect 116:137–145 [CrossRef]
    [Google Scholar]
  17. Leon-Velarde C. G., Cai H. Y., Larkin C., Bell-Rogers P., Stevens R. W. C., Odumeru J. A. 2004; Evaluation of methods for the identification of Salmonella enterica serotype Typhimurium DT104 from poultry environmental samples. J Microbiol Methods 58:79–86 [CrossRef]
    [Google Scholar]
  18. Luk J. M. C., Kongmuang U., Reeves P. R., Lindberg A. A. 1993; Selective amplification of abequose and paratose synthase genes ( rfb ) by polymerase chain reaction for identification of Salmonella major serogroups (A, B, C2, and D. J Clin Microbiol 31:2118–2123
    [Google Scholar]
  19. Malorny B., Hoorfar J., Bunge C., Helmuth R. 2003; Multicenter validation of the analytical accuracy of Salmonella PCR: towards an international standard. Appl Environ Microbiol 69:290–296 [CrossRef]
    [Google Scholar]
  20. Newton S. M. C., Wasley R. D., Wilson A., Rosenberg L. T., Miller J. F., Stocker B. A. D. 1991; Segment IV of a Salmonella flagellin gene specifies flagellar antigen epitopes. Mol Microbiol 5:419–425 [CrossRef]
    [Google Scholar]
  21. Popoff M. Y., Le Minor L. 2001 Antigenic Formulas of the Salmonella Serovars , 8th revision. WHO Collaborating Centre for Reference and Research on Salmonella Paris: Institut Pasteur;
    [Google Scholar]
  22. Rahn K., De Grandis S. A., Clarke R. C., McEwen S. A., Galán J. E., Ginocchio C., Curtiss R. III, Gyles C. L. 1992; Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella . Mol Cell Probes 6:271–279 [CrossRef]
    [Google Scholar]
  23. Roe A. 1999; Salmonella Brandenburg: a practitioner’s perspective. In Proceedings of the 29th Annual Seminar of the Society of Sheep and Beef Cattle Veterinarians of the New Zealand Veterinary Association pp 23–28
    [Google Scholar]
  24. Shah D. H., Park J.-H., Cho M.-R., Kim M.-C., Chae J.-S. 2005; Allele-specific PCR method based on rfbS sequence for distinguishing Salmonella gallinarum from Salmonella pullorum : serotype-specific rfbS sequence polymorphism. J Microbiol Methods 60:169–177 [CrossRef]
    [Google Scholar]
  25. Smart J. A. 2000; Latest experiences of Salmonella Brandenburg. In Proceedings of the 30th Annual Seminar of the Society of Sheep and Beef Cattle Veterinarians of the New Zealand Veterinary Association pp 137–150
    [Google Scholar]
  26. Wei L.-N., Joys T. M. 1985; Covalent structure of three phase-1 flagellar filament proteins of Salmonella . J Mol Biol 186:791–803 [CrossRef]
    [Google Scholar]
  27. Wyk P., Reeves P. 1989; Identification and sequence of the gene for abequose synthase, which confers antigenic specificity on group B salmonellae: homology with galactose epimerase. J Bacteriol 171:5687–5693
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.2008/002337-0
Loading
/content/journal/jmm/10.1099/jmm.0.2008/002337-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error