1887

Abstract

is an intracellular pathogen capable of multiplying to high levels in macrophages. By protein analysis, only a few proteins have been shown previously to be expressed at high levels in macrophages relative to bacteria grown in culture media. To identify additional genes that show increased expression during intracellular growth, we developed a plasmid for use in based on the induction of expression of green fluorescent protein. Clones of subsp. were identified that were fluorescent only intracellularly and not when grown . Sequencing identified a range of genes comprising some such as that are already known to be expressed intracellularly and some novel targets. One of these newly identified regulated genes, FTN1472/FTT1564, was selected for further study. Isogenic mutants were generated in subsp. and subsp. by allelic replacement. Inactivation of the gene resulted in abolition of polyphosphate production by , strongly supporting the bioinformatic analysis, which had suggested that the gene may encode a polyphosphate kinase. The mutants exhibited defects for intracellular growth in macrophages and were attenuated in mice, indicating a key role for the putative polyphosphate kinase in the virulence of .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.2008/001826-0
2008-10-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/10/1183.html?itemId=/content/journal/jmm/10.1099/jmm.0.2008/001826-0&mimeType=html&fmt=ahah

References

  1. Barker L. P., Brooks D. M., Small P. L. 1998; The identification of Mycobacterium marinum genes differentially expressed in macrophage phagosomes using promoter fusions to green fluorescent protein. Mol Microbiol 29:1167–1177 [CrossRef]
    [Google Scholar]
  2. Baron G. S., Nano F. E. 1998; MgIA and MgIB are required for the intramacrophage growth of Francisella novicida . Mol Microbiol 29:247–259 [CrossRef]
    [Google Scholar]
  3. Baron G. S., Reilly T. J., Nano F. E. 1999; The respiratory burst-inhibiting acid phosphatase AcpA is not essential for the intramacrophage growth or virulence of Francisella novicida . FEMS Microbiol Lett 176:85–90 [CrossRef]
    [Google Scholar]
  4. Brotcke A., Weiss D. S., Kim C. C., Chain P., Malfatti S., Garcia E., Monack D. M. 2006; Identification of MglA-regulated genes reveals novel virulence factors in Francisella tularensis . Infect Immun 74:6642–6655 [CrossRef]
    [Google Scholar]
  5. Candon H. L., Allan B. J., Fraley C. D., Gaynor E. C. 2007; Polyphosphate kinase 1 is a pathogenesis determinant in Campylobacter jejuni . J Bacteriol 189:8099–8108 [CrossRef]
    [Google Scholar]
  6. Chamberlain R. E. 1965; Evaluation of live tularemia vaccine prepared in a chemically defined medium. Appl Microbiol 13:232–235
    [Google Scholar]
  7. Crameri A., Whitehorn E. A., Tate E., Stemmer W. P. 1996; Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14:315–319 [CrossRef]
    [Google Scholar]
  8. Deng K., Blick R. J., Liu W., Hansen E. J. 2006; Identification of Francisella tularensis genes affected by iron limitation. Infect Immun 74:4224–4236 [CrossRef]
    [Google Scholar]
  9. Ellis J., Oyston P. C., Green M., Titball R. W. 2002; Tularemia. Clin Microbiol Rev 15:631–646 [CrossRef]
    [Google Scholar]
  10. Felts R. L., Reilly T. J., Tanner J. J. 2006; Structure of Francisella tularensis AcpA: prototype of a unique superfamily of acid phosphatases and phospholipases C. J Biol Chem 281:30289–30298 [CrossRef]
    [Google Scholar]
  11. Fortier A. H., Green S. J., Polsinelli T., Jones T. R., Crawford R. M., Leiby D. A., Elkins K. L., Meltzer M. S., Nacy C. A. 1994; Life and death of an intracellular pathogen: Francisella tularensis and the macrophage. Immunol Ser 60:349–361
    [Google Scholar]
  12. Fraley C. D., Rashid M. H., Lee S. S., Gottschalk R., Harrison J., Wood P. J., Brown M. R., Kornberg A. 2007; A polyphosphate kinase 1 ( ppk1 ) mutant of Pseudomonas aeruginosa exhibits multiple ultrastructural and functional defects. Proc Natl Acad Sci U S A 104:3526–3531 [CrossRef]
    [Google Scholar]
  13. Fulop M., Mastroeni P., Green M., Titball R. W. 2001; Role of antibody to lipopolysaccharide in protection against low- and high-virulence strains of Francisella tularensis . Vaccine 19:4465–4472 [CrossRef]
    [Google Scholar]
  14. Ghorbel S., Smirnov A., Chouayekh H., Sperandio B., Esnault C., Kormanec J., Virolle M. J. 2006; Regulation of ppk expression and in vivo function of Ppk in Streptomyces lividans . J Bacteriol 188:6269–6276 [CrossRef]
    [Google Scholar]
  15. Golovliov I., Ericsson M., Sandström G., Tärnvik A., Sjöstedt A. 1997; Identification of proteins of Francisella tularensis induced during growth in macrophages and cloning of the gene encoding a prominently induced 23-kilodalton protein. Infect Immun 65:2183–2189
    [Google Scholar]
  16. Golovliov I., Sjöstedt A., Mokrievich A., Pavlov V. 2003; A method for allelic replacement in Francisella tularensis . FEMS Microbiol Lett 222:273–280 [CrossRef]
    [Google Scholar]
  17. Kim K. S., Rao N. N., Fraley C. D., Kornberg A. 2002; Inorganic polyphosphate is essential for long-term survival and virulence factors in Shigella and Salmonella spp. Proc Natl Acad Sci U S A 99:7675–7680 [CrossRef]
    [Google Scholar]
  18. Kulaev I., Kulakovskaya T. 2000; Polyphosphate and phosphate pump. Annu Rev Microbiol 54:709–734 [CrossRef]
    [Google Scholar]
  19. Kuoppa K., Forsberg A., Norqvist A. 2001; Construction of a reporter plasmid for screening in vivo promoter activity in Francisella tularensis . FEMS Microbiol Lett 205:77–81 [CrossRef]
    [Google Scholar]
  20. Larsson P., Oyston P. C., Chain P., Chu M. C., Duffield M., Fuxelius H. H., Garcia E., Hälltorp G., Johansson D. other authors 2005; The complete genome sequence of Francisella tularensis , the causative agent of tularemia. Nat Genet 37:153–159 [CrossRef]
    [Google Scholar]
  21. Lauriano C. M., Barker J. R., Yoon S. S., Nano F. E., Arulanandam B. P., Hassett D. J., Klose K. E. 2004; MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival. Proc Natl Acad Sci U S A 101:4246–4249 [CrossRef]
    [Google Scholar]
  22. Lindgren H., Golovliov I., Baranov V., Ernst R. K., Telepnev M., Sjöstedt A. 2004; Factors affecting the escape of Francisella tularensis from the phagolysosome. J Med Microbiol 53:953–958 [CrossRef]
    [Google Scholar]
  23. LoVullo E. D., Sherrill L. A., Perez L. L., Pavelka M. S. Jr 2006; Genetic tools for highly pathogenic Francisella tularensis subsp tularensis . Microbiology 152:3425–3435 [CrossRef]
    [Google Scholar]
  24. Maier T. M., Casey M. S., Becker R. H., Dorsey C. W., Glass E. M., Maltsev N., Zahrt T. C., Frank D. W. 2007; Identification of Francisella tularensis Himar1 -based transposon mutants defective for replication in macrophages. Infect Immun 75:5376–5389 [CrossRef]
    [Google Scholar]
  25. Manganelli R. 2007; Polyphosphate and stress response in mycobacteria. Mol Microbiol 65:258–260 [CrossRef]
    [Google Scholar]
  26. Milne T. S., Michell S. L., Diaper H., Wikström P., Svensson K., Oyston P. C., Titball R. W. 2007; A 55 kDa hypothetical membrane protein is an iron-regulated virulence factor of Francisella tularensis subsp. novicida U112. J Med Microbiol 561268–1276 [CrossRef]
    [Google Scholar]
  27. Mohapatra N. P., Balagopal A., Soni S., Schlesinger L. S., Gunn J. S. 2007; AcpA is a Francisella acid phosphatase that affects intramacrophage survival and virulence. Infect Immun 75:390–396 [CrossRef]
    [Google Scholar]
  28. Norqvist A., Kuoppa K., Sandström G. 1996; Construction of a shuttle vector for use in Francisella tularensis . FEMS Immunol Med Microbiol 13:257–260 [CrossRef]
    [Google Scholar]
  29. Oyston P. C., Sjostedt A., Titball R. W. 2004; Tularemia: bioterrorism defence renews interest in Francisella tularensis . Nat Rev Microbiol 2:967–978 [CrossRef]
    [Google Scholar]
  30. Pechous R., Celli J., Penoske R., Hayes S. F., Frank D. W., Zahrt T. C. 2006; Construction and characterization of an attenuated purine auxotroph in a Francisella tularensis live vaccine strain. Infect Immun 74:4452–4461 [CrossRef]
    [Google Scholar]
  31. Quarry J. E., Isherwood K. E., Michell S. L., Diaper H., Titball R. W., Oyston P. C. 2007; A Francisella tularensis subspecies novicida purF mutant, but not a purA mutant, induces protective immunity to tularemia in mice. Vaccine 25:2011–2018 [CrossRef]
    [Google Scholar]
  32. Rashid M. H., Rumbaugh K., Passador L., Davies D. G., Hamood A. N., Iglewski B. H., Kornberg A. 2000; Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 97:9636–9641 [CrossRef]
    [Google Scholar]
  33. Reilly T. J., Baron G. S., Nano F. E., Kuhlenschmidt M. S. 1996; Characterization and sequencing of a respiratory burst-inhibiting acid phosphatase from Francisella tularensis . J Biol Chem 271:10973–10983 [CrossRef]
    [Google Scholar]
  34. Rohmer L., Brittnacher M., Svensson K., Buckley D., Haugen E., Zhou Y., Chang J., Levy R., Hayden H. other authors 2006; Potential source of Francisella tularensis live vaccine strain attenuation determined by genome comparison. Infect Immun 74:6895–6906 [CrossRef]
    [Google Scholar]
  35. Rohmer L., Fong C., Abmayr S., Wasnick M., Larson Freeman T. J., Radey M., Guina T., Svensson K., Hayden H. S. other authors 2007; Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains. Genome Biol 8:R102 [CrossRef]
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Shen H., Chen W., Conlan J. W. 2004; Mice sublethally infected with Francisella novicida U112 develop only marginal protective immunity against systemic or aerosol challenge with virulent type A or B strains of F. tularensis . Microb Pathog 37:107–110 [CrossRef]
    [Google Scholar]
  38. Simon R., Priefer U., Puehler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/technology 1:784–791 [CrossRef]
    [Google Scholar]
  39. Sjostedt A. 2006; Intracellular survival mechanisms of Francisella tularensis , a stealth pathogen. Microbes Infect 8:561–567 [CrossRef]
    [Google Scholar]
  40. Sugiura A., Hirokawa K., Nakashima K., Mizuno T. 1994; Signal-sensing mechanisms of the putative osmosensor Kdpd in Escherichia coli . Mol Microbiol 14:929–938 [CrossRef]
    [Google Scholar]
  41. Sureka K., Dey S., Datta P., Singh A. K., Dasgupta A., Rodrigue S., Basu J., Kundu M. 2007; Polyphosphate kinase is involved in stress-induced mprAB-sigE-rel signalling in mycobacteria. Mol Microbiol 65:261–276 [CrossRef]
    [Google Scholar]
  42. Tempel R., Lai X. H., Crosa L., Kozlowicz B., Heffron F. 2006; Attenuated Francisella novicida transposon mutants protect mice against wild-type challenge. Infect Immun 74:5095–5105 [CrossRef]
    [Google Scholar]
  43. Thomas R. M., Titball R. W., Oyston P. C., Griffin K., Waters E., Hitchen P. G., Michell S. L., Grice I. D., Wilson J. C., Prior J. L. 2007; The immunologically distinct O antigens from Francisella tularensis subspecies tularensis and Francisella novicida are both virulence determinants and protective antigens. Infect Immun 75:371–378 [CrossRef]
    [Google Scholar]
  44. Twine S., Byström M., Chen W., Forsman M., Golovliov I., Johansson A., Kelly J., Lindgren H., Svensson K. other authors 2005; A mutant of Francisella tularensis strain SCHU S4 lacking the ability to express a 58-kilodalton protein is attenuated for virulence and is an effective live vaccine. Infect Immun 73:8345–8352 [CrossRef]
    [Google Scholar]
  45. Twine S. M., Mykytczuk N. C., Petit M. D., Shen H., Sjöstedt A., Conlan J. W., Kelly J. F. 2006; In vivo proteomic analysis of the intracellular bacterial pathogen, Francisella tularensis , isolated from mouse spleen. Biochem Biophys Res Commun 345:1621–1633 [CrossRef]
    [Google Scholar]
  46. Valdivia R. H., Falkow S. 1997; Fluorescence-based isolation of bacterial genes expressed within host cells. Science 277:2007–2011 [CrossRef]
    [Google Scholar]
  47. Wilson R. L., Tvinnereim A. R., Jones B. D., Harty J. T. 2001; Identification of Listeria monocytogenes in vivo-induced genes by fluorescence-activated cell sorting. Infect Immun 69:5016–5024 [CrossRef]
    [Google Scholar]
  48. Yang S., Perna N. T., Cooksey D. A., Okinaka Y., Lindow S. E., Ibekwe A. M., Keen N. T., Yang C. H. 2004; Genome-wide identification of plant-upregulated genes of Erwinia chrysanthemi 3937 using a GFP-based IVET leaf array. Mol Plant Microbe Interact 17:999–1008 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.2008/001826-0
Loading
/content/journal/jmm/10.1099/jmm.0.2008/001826-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error