1887

Abstract

Hydrogen sulfide (HS) is a toxic gas that induces the modification and release of haemoglobin in erythrocytes; however, it also functions in methionine biosynthesis in bacteria. C–S lyase, encoded by the gene, is responsible for bacterial HS production through the cleavage of -cysteine. In this study, 26 of 29 crude extracts from reference and clinical strains of produced HS from -cysteine. The capacities in those strains were not higher than those in strains of the other anginosus group of streptococci, and , but were much greater than those in strains of , which is known to have an extremely low capacity for HS production. Incubation of the remaining three extracts with -cysteine did not result in HS production. Sequence analysis revealed that the genes from these three strains ( strains ATCC 27335, IMU151 and IMU202) contained mutations or small deletions. HS production in crude extracts prepared from ATCC 27335 was restored by repairing the gene sequence in genomic DNA. The kinetic properties of the purified recombinant protein encoded by the repaired gene were comparable to those of native proteins produced by HS-producing strains, whereas the truncated protein produced by ATCC 27335 had no enzymic activity with -cysteine or -cystathionine. However, real-time PCR analysis indicated that the gene in strains ATCC 27335, IMU151 and IMU202 is transcribed and regulated in a manner similar to that in the HS-producing strain.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.2008/001677-0
2008-11-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/11/1411.html?itemId=/content/journal/jmm/10.1099/jmm.0.2008/001677-0&mimeType=html&fmt=ahah

References

  1. Alting A. C., Engels W. J. M., van Schalkwijk S., Exterkate F. A. 1995; Purification and characterization of cystathionine β -lyase from Lactococcus lactis subsp. cremoris B78 and its possible role in flavor development in cheese. Appl Environ Microbiol 61:4037–4042
    [Google Scholar]
  2. Belfaiza J., Martel A., Margarita D., Saint Girons I. 1998; Direct sulfhydrylation for methionine biosynthesis in Leptospira meyeri . J Bacteriol 180:250–255
    [Google Scholar]
  3. Claesson R., Edlund M. B., Persson S., Carlsson J. 1990; Production of volatile sulfur compounds by various Fusobacterium species. Oral Microbiol Immunol 5:137–142 [CrossRef]
    [Google Scholar]
  4. Dobric N., Limsowtin G. K. Y., Hillier A. J., Dudman N. P., Davidson B. E. 2000; Identification and characterization of a cystathionine β / γ -lyase from Lactococcus lactis subsp. cremoris MG1363. FEMS Microbiol Lett 182:249–254
    [Google Scholar]
  5. Foglino M., Borne F., Bally M., Ball G., Patte J. C. 1995; A direct sulfhydrylation pathway is used for methionine biosynthesis in Pseudomonas aeruginosa . Microbiology 141:431–439 [CrossRef]
    [Google Scholar]
  6. Gossling J. 1988; Occurrence and pathogenicity of the Streptococcus milleri group. Rev Infect Dis 10:257–285 [CrossRef]
    [Google Scholar]
  7. Havarstein L. S., Hakenbeck R., Gaustad P. 1997; Natural competence in the genus Streptococcus : evidence that streptococci can change pherotype by interspecies recombinational exchanges. J Bacteriol 179:6589–6594
    [Google Scholar]
  8. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R. 1989; Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77:61–68 [CrossRef]
    [Google Scholar]
  9. Jacobs J. A., Pietersen H. G., Stobberingh E. E., Soeters P. B. 1995; Streptococcus anginosus , Streptococcus constellatus and Streptococcus intermedius . Clinical relevance, hemolytic and serologic characteristics. Am J Clin Pathol 104:547–553
    [Google Scholar]
  10. Kawamura Y., Whiley R. A., Shu S. E., Ezaki T., Hardie J. M. 1999; Genetic approaches to the identification of the mitis group within the genus Streptococcus . Microbiology 145:2605–2613
    [Google Scholar]
  11. Kredich N. M. 1996; Biosynthesis of cysteine. In Escherichia coli and Salmonella: Cellular and Molecular Biology . pp 514–527 Edited by Neidhardt F. C., Curtiss R. III, Ingraham J. L., Lin E. C. C., Low E. B., Magasanik B., Reznikoff W. S., Schaechter M., Umbarger H. E. Washington, DC: American Society for Microbiology;
  12. LeBlanc D. J., Lee L. N., Abu-Al-Jaibat A. 1992; Molecular, genetic, and functional analysis of the basic replicon of pVA380-1, a plasmid of oral streptococcal origin. Plasmid 28:130–145 [CrossRef]
    [Google Scholar]
  13. Li L., Bhatia M., Zhu Y. Z., Zhu Y. C., Ramnath R. D., Wang Z. J., Anuar F. B., Whiteman M., Salto-Tellez M., Moore P. K. 2005; Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J 19:1196–1198
    [Google Scholar]
  14. Lunsford R. D. 1995; A Tn 4001 delivery system for Streptococcus gordonii (Challis). Plasmid 33:153–157 [CrossRef]
    [Google Scholar]
  15. Molina J. M., Leport C., Bure A., Wolff M., Michon C., Vilde J. L. 1991; Clinical and bacterial features of infections caused by Streptococcus milleri . Scand J Infect Dis 23:659–666 [CrossRef]
    [Google Scholar]
  16. Nagamune H., Whiley R. A., Goto T., Inai Y., Maeda T., Hardie J. M., Kourai H. 2000; Distribution of the intermedilysin gene among the anginosus group streptococci and correlation between intermedilysin production and deep-seated infection with Streptococcus intermedius . J Clin Microbiol 38:220–226
    [Google Scholar]
  17. Nakano Y., Yoshida Y., Yamashita Y., Koga T. 1995; Construction of a series of pACYC-derived plasmid vectors. Gene 162:157–158 [CrossRef]
    [Google Scholar]
  18. Schmidt A. 1987; d-Cysteine desulfhydrase from spinach. Methods Enzymol 143449–451
    [Google Scholar]
  19. Schulze E., Neuhoff V. 1976; Oxidative side reactions during dansylation of SH-compounds. Hoppe Seylers Z Physiol Chem 357:225–231 [CrossRef]
    [Google Scholar]
  20. Smith D. A. 1971; S-amino acid metabolism and its regulation in Escherichia coli and Salmonella typhimurium . Adv Genet 16:141–165
    [Google Scholar]
  21. Socransky S. S., Dzink J. L., Smith C. M. 1985; Chemically defined medium for oral microorganisms. J Clin Microbiol 22:303–305
    [Google Scholar]
  22. Soda K. 1968; Microdetermination of d-amino acids and d-amino acid oxidase activity with 3-methyl-2-benzothiazolone hydrazone hydrochloride. Anal Biochem 25:228–235 [CrossRef]
    [Google Scholar]
  23. Soda K. 1987; Microbial sulfur amino acids: an overview . Methods Enzymol 143449–451
    [Google Scholar]
  24. Takao A., Nagamune H., Maeda N. 2004; Identification of the anginosus group within the genus Streptococcus using polymerase chain reaction. FEMS Microbiol Lett 233:83–89 [CrossRef]
    [Google Scholar]
  25. Tapuhi Y., Schmidt D. E., Lindner W., Karger B. L. 1981; Dansylation of amino acid for high-performance liquid chromatography analysis. Anal Biochem 115:123–129 [CrossRef]
    [Google Scholar]
  26. Tate R., Riccio A., Caputo E., Iaccarino M., Patriarca E. J. 1999; The Rhizobium etli metZ gene is essential for methionine biosynthesis and nodulation of Phaseolus vulgaris . Mol Plant Microbe Interact 12:24–34 [CrossRef]
    [Google Scholar]
  27. Terleckyj B., Willett N. P., Shockman G. D. 1975; Growth of several cariogenic strains of oral streptococci in a chemically defined medium. Infect Immun 11:649–655
    [Google Scholar]
  28. Thomas D., Surdin-Kerjan Y. 1997; Metabolism of sulfur amino acids in Saccharomyces cerevisiae . Microbiol Mol Biol Rev 61:503–532
    [Google Scholar]
  29. Van der Auwera P. 1985; Clinical significance of Streptococcus milleri . Eur J Clin Microbiol 4:386–390 [CrossRef]
    [Google Scholar]
  30. Whiley R. A., Beighton D. 1991; Emended descriptions and recognition of Streptococcus constellatus , Streptococcus intermedius , and Streptococcus anginosus as distinct species. Int J Syst Bacteriol 41:1–5 [CrossRef]
    [Google Scholar]
  31. Whiley R. A., Fraser H., Hardie J. M., Beighton D. 1990; Phenotypic differentiation of Streptococcus intermedius , Streptococcus constellatus , and Streptococcus anginosus strains within the “ Streptococcus milleri group”. J Clin Microbiol 28:1497–1501
    [Google Scholar]
  32. Whiley R. A., Beighton D., Winstanley T. G., Fraser H. Y., Hardie J. M. 1992; Streptococcus intermedius , Streptococcus constellatus , and Streptococcus anginosus (the Streptococcus milleri group): association with different body sites and clinical infections. J Clin Microbiol 30:243–244
    [Google Scholar]
  33. Yang G., Sun X., Wang R. 2004; Hydrogen sulfide-induced apoptosis of human aorta smooth muscle cells via the activation of mitogen-activated protein kinases and caspase-3. FASEB J 18:1782–1784
    [Google Scholar]
  34. Yoshida Y., Nakano Y., Amano A., Yoshimura M., Fukamachi H., Oho T., Koga T. 2002; lcd from Streptoccus anginosus encodes a C–S lyase with α , β -elimination activity that degrades l-cysteine. Microbiology 148:3961–3970
    [Google Scholar]
  35. Yoshida Y., Negishi M., Amano A., Oho T., Nakano Y. 2003a; Differences in the β C–S lyase activities of viridans group streptococci. Biochem Biophys Res Commun 300:55–60 [CrossRef]
    [Google Scholar]
  36. Yoshida Y., Negishi M., Nakano Y. 2003b; Homocysteine biosynthesis pathways of Streptococcus anginosus . FEMS Microbiol Lett 221:277–284 [CrossRef]
    [Google Scholar]
  37. Yoshida Y., Ganguly S., Bush C. A., Cisar J. O. 2005; Carbohydrate engineering of the recognition motifs in streptococcal co-aggregation receptor polysaccharides. Mol Microbiol 58:244–256 [CrossRef]
    [Google Scholar]
  38. Yoshida Y., Ito S., Sasaki T., Kishi M., Kurota M., Suwabe A., Kunimatsu K., Kato H. 2008; Molecular and enzymatic characterization of β C–S lyase in Streptococcus constellatus . Oral Microbiol Immunol 23:245–253 [CrossRef]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.2008/001677-0
Loading
/content/journal/jmm/10.1099/jmm.0.2008/001677-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error