1887

Abstract

The survival mechanism of dormant tubercle bacilli is unknown; however, accumulating evidence indicates that can survive and persist in hypoxic and mildly acidic microenvironments. Such conditions are found in the acidic vacuoles of macrophages, which is known to target. We used DECAL (differential expression using customized amplification library) to identify the genes expressed under acidic and hypoxic conditions, following the cultivation of H37Rv at an acidic pH and/or under hypoxic or anoxic conditions . Of 960 clones analysed, 144 genes, consisting of 71 induced and 8 repressed genes, were identified by sequencing and divided into functional categories to characterize their cellular roles. In general, the genes induced under acidic and hypoxic conditions were involved in the biosynthesis of secondary metabolites (e.g. ), lipid metabolism, energy production (e.g. ) and cell wall biogenesis (e.g. and ). The combination of genes identified may explain the energy processing and energy storage of during latent infection. These findings not only enhance our understanding of the mechanism of dormancy, but they also may be useful in the design of therapeutic tools and vaccines for latent tuberculosis.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.2008/001545-0
2008-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/12/1473.html?itemId=/content/journal/jmm/10.1099/jmm.0.2008/001545-0&mimeType=html&fmt=ahah

References

  1. Alland D., Kramnik I., Weisbrod T. R., Otsubo L., Cerny R., Miller L. P., Jacobs W. R. Jr, Bloom B. R. 1998; Identification of differentially expressed mRNA in prokaryotic organisms by customized amplification libraries (DECAL): the effect of isoniazid on gene expression in Mycobacterium tuberculosis . Proc Natl Acad Sci U S A 95:13227–13232 [CrossRef]
    [Google Scholar]
  2. Belisle J. T., Sonnenberg M. G. 1998; Isolation of genomic DNA from mycobacteria. Methods Mol Biol 101:31–44
    [Google Scholar]
  3. Bloch H., Segal W. 1956; Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. J Bacteriol 72:132–141
    [Google Scholar]
  4. Clemens D. L., Horwitz M. A. 1995; Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J Exp Med 181:257–270 [CrossRef]
    [Google Scholar]
  5. Dubey V. S., Sirakova T. D., Kolattukudy P. E. 2002; Disruption of msl3 abolishes the synthesis of mycolipanoic and mycolipenic acids required for polyacyltrehalose synthesis in Mycobacterium tuberculosis H37Rv and causes cell aggregation. Mol Microbiol 45:1451–1459 [CrossRef]
    [Google Scholar]
  6. Höner zu Bentrup K., Russell D. G. 2001; Mycobacterial persistence: adaptation to a changing environment. Trends Microbiol 9:597–605 [CrossRef]
    [Google Scholar]
  7. Kochi A. 1991; The global tuberculosis situation and the new control strategy of the World Health Organization. Tubercle 72:1–6 [CrossRef]
    [Google Scholar]
  8. Koul A., Herget T., Klebl B., Ullrich A. 2004; Interplay between mycobacteria and host signalling pathways. Nat Rev Microbiol 2:189–202 [CrossRef]
    [Google Scholar]
  9. Liu K., Yu J., Russell D. G. 2003; pckA -deficient Mycobacterium bovis BCG shows attenuated virulence in mice and in macrophages. Microbiology 149:1829–1835 [CrossRef]
    [Google Scholar]
  10. McKinney J. D., Höner zu Bentrup K., Muñoz-Elías E. J., Miczak A., Chen B., Chan W. T., Swenson D., Sacchettini J. C., Jacobs W. R. Jr, Russell D. G. 2000; Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735–738 [CrossRef]
    [Google Scholar]
  11. Mustafa Abu S., Al-Attiyah R. 2003; Tuberculosis: looking beyond BCG vaccines. J Postgrad Med 49:134–140
    [Google Scholar]
  12. Payton M., Pinter K. 1999; A rapid novel method for the extraction of RNA from wild-type and genetically modified kanamycin resistant mycobacteria. FEMS Microbiol Lett 180:141–146 [CrossRef]
    [Google Scholar]
  13. Piddington D. L., Kashkouli A., Buchmeier N. A. 2000; Growth of Mycobacterium tuberculosis in a defined medium is very restricted by acid pH and Mg2+ levels. Infect Immun 68:4518–4522 [CrossRef]
    [Google Scholar]
  14. Raynaud C., Guilhot C., Rauzier J., Bordat Y., Pelicic V., Manganelli R., Smith I., Gicquel B., Jackson M. 2002; Phospholipases C are involved in the virulence of Mycobacterium tuberculosis . Mol Microbiol 45:203–217 [CrossRef]
    [Google Scholar]
  15. Reed M. B., Domenech P., Manca C., Su H., Barczak A. K., Kreiswirth B. N., Kaplan G., Barry C. E. III 2004; A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431:84–87 [CrossRef]
    [Google Scholar]
  16. Russell D. G. 2001; Mycobacterium tuberculosis : here today, and here tomorrow. Nat Rev Mol Cell Biol 2:569–577 [CrossRef]
    [Google Scholar]
  17. Salkin D., Wayne L. G. 1956; The bacteriology of resected tuberculous pulmonary lesions. I. The effect of interval between reversal of infectiousness and subsequent surgery. Am Rev Tuberc 74:376–387
    [Google Scholar]
  18. Sambrook J., Russel D. R. 2001 Molecular Cloning; a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Schnappinger D., Ehrt S., Voskuil M. I., Liu Y., Mangan J. A., Monahan I. M., Dolganov G., Efron B., Butcher P. D. other authors 2003; Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198:693–704 [CrossRef]
    [Google Scholar]
  20. Timm J., Post F. A., Bekker L. G., Walther G. B., Wainwright H. C., Manganelli R., Chan W. T., Tsenova L., Gold B. other authors 2003; Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc Natl Acad Sci U S A 100:14321–14326 [CrossRef]
    [Google Scholar]
  21. Wayne L. G. 1994; Dormancy of Mycobacterium tuberculosis and latency of disease. Eur J Clin Microbiol Infect Dis 13:908–914 [CrossRef]
    [Google Scholar]
  22. Wayne L. G., Hayes L. G. 1996; An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64:2062–2069
    [Google Scholar]
  23. Weimar J. D., DiRusso C. C., Delio R., Black P. N. 2002; Functional role of fatty acyl-coenzyme A synthetase in the transmembrane movement and activation of exogenous long-chain fatty acids. Amino acid residues within the ATP/AMP signature motif of Escherichia coli FadD are required for enzyme activity and fatty acid transport. J Biol Chem 277:29369–29376 [CrossRef]
    [Google Scholar]
  24. Wheeler P. R., Ratledge C. 1988; Use of carbon sources for lipid biosynthesis in Mycobacterium leprae : a comparison with other pathogenic mycobacteria. J Gen Microbiol 134:2111–2121
    [Google Scholar]
  25. Wheeler P. R., Bulmer K., Ratledge C. 1990; Enzymes for biosynthesis de novo and elongation of fatty acids in mycobacteria grown in host cells: is Mycobacterium leprae competent in fatty acid biosynthesis?. J Gen Microbiol 136:211–217 [CrossRef]
    [Google Scholar]
  26. Wheeler P. R., Bulmer K., Ratledge C. 1991; Fatty acid oxidation and the β -oxidation complex in Mycobacterium leprae and two axenically cultivable mycobacteria that are pathogens. J Gen Microbiol 137:885–893 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.2008/001545-0
Loading
/content/journal/jmm/10.1099/jmm.0.2008/001545-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error