1887

Abstract

Limited -lactams show antipseudomonal activity. The rapid spread of IMP-type metallo--lactamases (MBLs), which have a broad spectrum of substrates and a poor susceptibility to clinically available inhibitors, further restricts -lactam use. In the present study, we evaluated the potency of IMP-10 MBL in hydrolysing antipseudomonal -lactams currently available in the clinic. Crude IMP-10 MBL was prepared from two clinical isolates of harbouring the gene. The sensitivity of -lactams to hydrolysis by IMP-10 MBL was determined by comparing the MICs of 14 antipseudomonal -lactams against a susceptible strain of in the presence and absence of IMP-10 MBL. Carbapenems (imipenem, meropenem and panipenem) and extended-spectrum cephems (ceftazidime, cefoperazone, cefsulodin and cefepime) were sensitive to the hydrolysing activity of IMP-10 MBL. By comparison, the fourth-generation cephem (cefpirome), the extended-spectrum penicillins (carbenicillin, ticarcillin, piperacillin and mezlocillin) and monobactams (aztreonam and carumonam) were relatively resistant to IMP-10 MBL. The sensitivity profile of antipseudomonal -lactams to IMP-10 MBL generated in the present study provides a valuable reference for antibiotic selection by medical professionals.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.2008/001388-0
2008-08-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/8/974.html?itemId=/content/journal/jmm/10.1099/jmm.0.2008/001388-0&mimeType=html&fmt=ahah

References

  1. Arakawa, Y., Murakami, M., Suzuki, K., Ito, H., Wacharotayankun, R., Ohsuka, S., Kato, N. & Ohta, M. ( 1995; ). A novel integron-like element carrying the metallo-β-lactamase gene bla IMP. Antimicrob Agents Chemother 39, 1612–1615.[CrossRef]
    [Google Scholar]
  2. Bush, K. ( 1998; ). Metallo-β-lactamases: a class apart. Clin Infect Dis 27 (Suppl. 1), S48–S53.[CrossRef]
    [Google Scholar]
  3. Bush, K., Jacoby, G. A. & Medeiros, A. A. ( 1995; ). A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39, 1211–1233.[CrossRef]
    [Google Scholar]
  4. Frere, J.-M. ( 1995; ). Beta-lactamases and bacterial resistance to antibiotics. Mol Microbiol 16, 385–395.[CrossRef]
    [Google Scholar]
  5. Gilbert, D. N., Moellering, R. C., Eliopoulos, G. M. & Sande, M. A. ( 2005; ). The Sanford Guide to Antimicrobial Therapy 2005, 35th edn. Hyde Park, VT: Antimicrobial Therapy, Inc.
  6. Girlich, D., Naas, T. & Nordmann, P. ( 2004; ). Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa. Antimicrob Agents Chemother 48, 2043–2048.[CrossRef]
    [Google Scholar]
  7. Goto, M., Takahashi, T., Yamashita, F., Koreeda, A., Mori, H., Ohta, M. & Arakawa, Y. ( 1997; ). Inhibition of the metallo-beta-lactamase produced from Serratia marcescens by thiol compounds. Biol Pharm Bull 20, 1136–1140.[CrossRef]
    [Google Scholar]
  8. Hanson, N. D. & Sanders, C. C. ( 1999; ). Regulation of inducible AmpC beta-lactamase expression among Enterobacteriaceae. Curr Pharm Des 5, 881–894.
    [Google Scholar]
  9. Ito, H., Arakawa, Y., Ohsuka, S., Wacharotayankun, R., Kato, N. & Ohta, M. ( 1995; ). Plasmid-mediated dissemination of the metallo-β-lactamase gene bla IMP among clinically isolated strains of Serratia marcescens. Antimicrob Agents Chemother 39, 824–829.[CrossRef]
    [Google Scholar]
  10. Iyobe, S., Kusadokoro, H., Takahashi, A., Yomoda, S., Okubo, T., Nakamura, A. & O'Hara, K. ( 2002; ). Detection of a variant metallo-β-lactamase, IMP-10, from two unrelated strains of Pseudomonas aeruginosa and an Alcaligenes xylosoxidans strain. Antimicrob Agents Chemother 46, 2014–2016.[CrossRef]
    [Google Scholar]
  11. Kimura, S., Alba, J., Shiroto, K., Sano, R., Niki, Y., Maesaki, S., Akizawa, K., Kaku, M., Watanuki, Y. & other authors ( 2005; ). Clonal diversity of metallo-β-lactamase-possessing Pseudomonas aeruginosa in geographically diverse regions of Japan. J Clin Microbiol 43, 458–461.[CrossRef]
    [Google Scholar]
  12. Li, X.-Z., Zhang, L. & Poole, K. ( 2000; ). Interplay between the MexA–MexB–OprM multidrug efflux system and the outer membrane barrier in the multiple antibiotic resistance of Pseudomonas aeruginosa. J Antimicrob Chemother 45, 433–436.[CrossRef]
    [Google Scholar]
  13. Livermore, D. M. ( 1998; ). β-Lactamase-mediated resistance and opportunities for its control. J Antimicrob Chemother 41 (Suppl. D), 25–41.
    [Google Scholar]
  14. Livermore, D. M. & Woodford, N. ( 2000; ). Carbapenemases: a problem in waiting? Curr Opin Microbiol 3, 489–495.[CrossRef]
    [Google Scholar]
  15. Lodge, J. M., Minchin, S. D., Piddock, L. J. & Busby, J. W. ( 1990; ). Cloning, sequencing and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chromosomal ampC beta-lactamase. Biochem J 272, 627–631.
    [Google Scholar]
  16. NCCLS ( 2000; ). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 5th edn. Document M7-A5. Wayne, PA: National Committee for Clinical Laboratory Standards.
  17. Nordmann, P. & Poirel, L. ( 2002; ). Emerging carbapenemases in Gram-negative aerobes. Clin Microbiol Infect 8, 321–331.[CrossRef]
    [Google Scholar]
  18. O'Callaghan, C. H., Morris, A., Kirby, S. M. & Shingler, A. H. ( 1972; ). Novel method for detection of β-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother 1, 283–288.[CrossRef]
    [Google Scholar]
  19. Osano, E., Arakawa, Y., Wacharotayankun, R., Ohta, M., Horii, T., Ito, H., Yoshimura, F. & Kato, N. ( 1994; ). Molecular characterization of an enterobacterial metallo β-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob Agents Chemother 38, 71–78.[CrossRef]
    [Google Scholar]
  20. Rasmussen, B. A. & Bush, K. ( 1997; ). Carbapenem-hydrolyzing β-lactamases. Antimicrob Agents Chemother 41, 223–232.
    [Google Scholar]
  21. Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., Brinkman, F. S., Hufnagle, W. O., Kowalik, D. J. & other authors ( 2000; ). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–964.[CrossRef]
    [Google Scholar]
  22. Walsh, T. R., Toleman, M. A., Poirel, L. & Nordmann, P. ( 2005; ). Metallo-β-lactamases: the quiet before the storm? Clin Microbiol Rev 18, 306–325.[CrossRef]
    [Google Scholar]
  23. Watanabe, M., Iyobe, S., Inoue, M. & Mitsuhashi, S. ( 1991; ). Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 35, 147–151.[CrossRef]
    [Google Scholar]
  24. Zhao, W.-H., Hu, Z.-Q., Hara, Y. & Shimamura, T. ( 2002; ). Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus. Antimicrob Agents Chemother 46, 2266–2268.[CrossRef]
    [Google Scholar]
  25. Zhao, W.-H., Hu, Z.-Q., Chen, G., Matsushita, K., Fukuchi, K. & Shimamura, T. ( 2007; ). Characterization of imipenem-resistant Serratia marcescens producing IMP-type and TEM-type β-lactamases encoded on a single plasmid. Microbiol Res 162, 46–52.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.2008/001388-0
Loading
/content/journal/jmm/10.1099/jmm.0.2008/001388-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error