1887

Abstract

Limited -lactams show antipseudomonal activity. The rapid spread of IMP-type metallo--lactamases (MBLs), which have a broad spectrum of substrates and a poor susceptibility to clinically available inhibitors, further restricts -lactam use. In the present study, we evaluated the potency of IMP-10 MBL in hydrolysing antipseudomonal -lactams currently available in the clinic. Crude IMP-10 MBL was prepared from two clinical isolates of harbouring the gene. The sensitivity of -lactams to hydrolysis by IMP-10 MBL was determined by comparing the MICs of 14 antipseudomonal -lactams against a susceptible strain of in the presence and absence of IMP-10 MBL. Carbapenems (imipenem, meropenem and panipenem) and extended-spectrum cephems (ceftazidime, cefoperazone, cefsulodin and cefepime) were sensitive to the hydrolysing activity of IMP-10 MBL. By comparison, the fourth-generation cephem (cefpirome), the extended-spectrum penicillins (carbenicillin, ticarcillin, piperacillin and mezlocillin) and monobactams (aztreonam and carumonam) were relatively resistant to IMP-10 MBL. The sensitivity profile of antipseudomonal -lactams to IMP-10 MBL generated in the present study provides a valuable reference for antibiotic selection by medical professionals.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.2008/001388-0
2008-08-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/8/974.html?itemId=/content/journal/jmm/10.1099/jmm.0.2008/001388-0&mimeType=html&fmt=ahah

References

  1. Arakawa Y., Murakami M., Suzuki K., Ito H., Wacharotayankun R., Ohsuka S., Kato N., Ohta M. 1995; A novel integron-like element carrying the metallo- β -lactamase gene bla IMP . Antimicrob Agents Chemother 39:1612–1615 [CrossRef]
    [Google Scholar]
  2. Bush K. 1998; Metallo- β -lactamases: a class apart. Clin Infect Dis 27 (Suppl. 1):S48–S53 [CrossRef]
    [Google Scholar]
  3. Bush K., Jacoby G. A., Medeiros A. A. 1995; A functional classification scheme for β -lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39:1211–1233 [CrossRef]
    [Google Scholar]
  4. Frere J.-M. 1995; Beta-lactamases and bacterial resistance to antibiotics. Mol Microbiol 16:385–395 [CrossRef]
    [Google Scholar]
  5. Gilbert D. N., Moellering R. C., Eliopoulos G. M., Sande M. A. 2005 The Sanford Guide to Antimicrobial Therapy 2005 , 35th edn. Hyde Park, VT: Antimicrobial Therapy, Inc;
    [Google Scholar]
  6. Girlich D., Naas T., Nordmann P. 2004; Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa . Antimicrob Agents Chemother 48:2043–2048 [CrossRef]
    [Google Scholar]
  7. Goto M., Takahashi T., Yamashita F., Koreeda A., Mori H., Ohta M., Arakawa Y. 1997; Inhibition of the metallo-beta-lactamase produced from Serratia marcescens by thiol compounds. Biol Pharm Bull 20:1136–1140 [CrossRef]
    [Google Scholar]
  8. Hanson N. D., Sanders C. C. 1999; Regulation of inducible AmpC beta-lactamase expression among Enterobacteriaceae. Curr Pharm Des 5:881–894
    [Google Scholar]
  9. Ito H., Arakawa Y., Ohsuka S., Wacharotayankun R., Kato N., Ohta M. 1995; Plasmid-mediated dissemination of the metallo- β -lactamase gene bla IMP among clinically isolated strains of Serratia marcescens . Antimicrob Agents Chemother 39:824–829 [CrossRef]
    [Google Scholar]
  10. Iyobe S., Kusadokoro H., Takahashi A., Yomoda S., Okubo T., Nakamura A., O'Hara K. 2002; Detection of a variant metallo- β -lactamase, IMP-10, from two unrelated strains of Pseudomonas aeruginosa and an Alcaligenes xylosoxidans strain. Antimicrob Agents Chemother 46:2014–2016 [CrossRef]
    [Google Scholar]
  11. Kimura S., Alba J., Shiroto K., Sano R., Niki Y., Maesaki S., Akizawa K., Kaku M., Watanuki Y. other authors 2005; Clonal diversity of metallo- β -lactamase-possessing Pseudomonas aeruginosa in geographically diverse regions of Japan. J Clin Microbiol 43:458–461 [CrossRef]
    [Google Scholar]
  12. Li X.-Z., Zhang L., Poole K. 2000; Interplay between the MexA–MexB–OprM multidrug efflux system and the outer membrane barrier in the multiple antibiotic resistance of Pseudomonas aeruginosa . J Antimicrob Chemother 45:433–436 [CrossRef]
    [Google Scholar]
  13. Livermore D. M. 1998; β -Lactamase-mediated resistance and opportunities for its control. J Antimicrob Chemother 41 (Suppl. D):25–41
    [Google Scholar]
  14. Livermore D. M., Woodford N. 2000; Carbapenemases: a problem in waiting?. Curr Opin Microbiol 3:489–495 [CrossRef]
    [Google Scholar]
  15. Lodge J. M., Minchin S. D., Piddock L. J., Busby J. W. 1990; Cloning, sequencing and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chromosomal ampC beta-lactamase. Biochem J 272:627–631
    [Google Scholar]
  16. NCCLS 2000 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically , 5th edn. Document M7-A5 Wayne, PA: National Committee for Clinical Laboratory Standards;
    [Google Scholar]
  17. Nordmann P., Poirel L. 2002; Emerging carbapenemases in Gram-negative aerobes. Clin Microbiol Infect 8:321–331 [CrossRef]
    [Google Scholar]
  18. O'Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. 1972; Novel method for detection of β -lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother 1:283–288 [CrossRef]
    [Google Scholar]
  19. Osano E., Arakawa Y., Wacharotayankun R., Ohta M., Horii T., Ito H., Yoshimura F., Kato N. 1994; Molecular characterization of an enterobacterial metallo β -lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob Agents Chemother 38:71–78 [CrossRef]
    [Google Scholar]
  20. Rasmussen B. A., Bush K. 1997; Carbapenem-hydrolyzing β -lactamases. Antimicrob Agents Chemother 41:223–232
    [Google Scholar]
  21. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J. other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964 [CrossRef]
    [Google Scholar]
  22. Walsh T. R., Toleman M. A., Poirel L., Nordmann P. 2005; Metallo- β -lactamases: the quiet before the storm?. Clin Microbiol Rev 18:306–325 [CrossRef]
    [Google Scholar]
  23. Watanabe M., Iyobe S., Inoue M., Mitsuhashi S. 1991; Transferable imipenem resistance in Pseudomonas aeruginosa . Antimicrob Agents Chemother 35:147–151 [CrossRef]
    [Google Scholar]
  24. Zhao W.-H., Hu Z.-Q., Hara Y., Shimamura T. 2002; Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus . Antimicrob Agents Chemother 46:2266–2268 [CrossRef]
    [Google Scholar]
  25. Zhao W.-H., Hu Z.-Q., Chen G., Matsushita K., Fukuchi K., Shimamura T. 2007; Characterization of imipenem-resistant Serratia marcescens producing IMP-type and TEM-type β -lactamases encoded on a single plasmid. Microbiol Res 162:46–52 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.2008/001388-0
Loading
/content/journal/jmm/10.1099/jmm.0.2008/001388-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error