1887

Abstract

This study investigated the molecular epidemiology of in the University of Debrecen in relation to antibiotic consumption. Overall and ward-specific antibiotic consumption was measured by the number of defined daily doses (DDD) per 100 bed-days between 2002 and 2012. Consumption was analysed against the number of positive patients per 100 bed-days, number of isolates per positive sample, and proportion of carbapenem resistant , using time-series analysis. Altogether 160 isolates from different wards were collected and analysed. Carbapenemase genes , , , , and integrons were sought by PCR. Relatedness of isolates was assessed by PFGE. Prevalence and carbapenem resistance of were statistically associated with carbapenem consumption. Prevalence data followed carbapenem usage with three quarterly lags (r = 0.51–0.53, <0.001), and meropenem and ertapenem, but not imipenem usage, affected prevalence. Colistin usage, in turn, lagged behind prevalence with one lag (r = 0.68–0.70, <0.001). Six clusters were identified; the neurology ward with the lowest carbapenem consumption was associated with the carbapenem-susceptible cluster, as well as with the carbapenem-susceptible isolates in the cluster with variable susceptibility. Wards with high carbapenem usage almost exclusively harboured isolates from carbapenem-resistant clusters. All clusters were dominated by isolates of one or two wards, but most wards were represented in multiple clusters. Increases in prevalence and carbapenem resistance of were associated with usage of meropenem and ertapenem but not of imipenem, which led to the spread of multiple clones in the University.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.082818-0
2014-12-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/12/1654.html?itemId=/content/journal/jmm/10.1099/jmm.0.082818-0&mimeType=html&fmt=ahah

References

  1. Ansaldi F., Canepa P., Bassetti M., Zancolli M., Molinari M. P., Talamini A., Ginocchio F., Durando P., Mussap M.. & other authors ( 2011;). Sequential outbreaks of multidrug-resistant Acinetobacter baumannii in intensive care units of a tertiary referral hospital in Italy: combined molecular approach for epidemiological investigation. . J Hosp Infect 79:, 134–140. [CrossRef][PubMed]
    [Google Scholar]
  2. Bergman M., Nyberg S. T., Huovinen P., Paakkari P., Hakanen A. J..Finnish Study Group for Antimicrobial Resistance ( 2009;). Association between antimicrobial consumption and resistance in Escherichia coli. . Antimicrob Agents Chemother 53:, 912–917. [CrossRef][PubMed]
    [Google Scholar]
  3. Bogaerts P., Galimand M., Bauraing C., Deplano A., Vanhoof R., De Mendonca R., Rodriguez-Villalobos H., Struelens M., Glupczynski Y.. ( 2007;). Emergence of ArmA and RmtB aminoglycoside resistance 16S rRNA methylases in Belgium. . J Antimicrob Chemother 59:, 459–464. [CrossRef][PubMed]
    [Google Scholar]
  4. Bronzwaer S. L., Cars O., Buchholz U., Mölstad S., Goettsch W., Veldhuijzen I. K., Kool J. L., Sprenger M. J., Degener J. E..European Antimicrobial Resistance Surveillance System ( 2002;). A European study on the relationship between antimicrobial use and antimicrobial resistance. . Emerg Infect Dis 8:, 278–282. [CrossRef][PubMed]
    [Google Scholar]
  5. Cisneros J. M., Rodríguez-Baño J.. ( 2002;). Nosocomial bacteremia due to Acinetobacter baumannii: epidemiology, clinical features and treatment. . Clin Microbiol Infect 8:, 687–693. [CrossRef][PubMed]
    [Google Scholar]
  6. Clinical and Laboratory Standards Institute (CLSI) ( 2010;). Antimicrobial Susceptibility Testing Guidelines. .
  7. Corbella X., Montero A., Pujol M., Domínguez M. A., Ayats J., Argerich M. J., Garrigosa F., Ariza J., Gudiol F.. ( 2000;). Emergence and rapid spread of carbapenem resistance during a large and sustained hospital outbreak of multiresistant Acinetobacter baumannii. . J Clin Microbiol 38:, 4086–4095.[PubMed]
    [Google Scholar]
  8. Couce A., Blázquez J.. ( 2009;). Side effects of antibiotics on genetic variability. . FEMS Microbiol Rev 33:, 531–538. [CrossRef][PubMed]
    [Google Scholar]
  9. Frana T. S., Carlson S. A., Griffith R. W.. ( 2001;). Relative distribution and conservation of genes encoding aminoglycoside-modifying enzymes in Salmonella enterica serotype typhimurium phage type DT104. . Appl Environ Microbiol 67:, 445–448. [CrossRef][PubMed]
    [Google Scholar]
  10. Giannouli M., Cuccurullo S., Crivaro V., Di Popolo A., Bernardo M., Tomasone F., Amato G., Brisse S., Triassi M.. & other authors ( 2010;). Molecular epidemiology of multidrug-resistant Acinetobacter baumannii in a tertiary care hospital in Naples, Italy, shows the emergence of a novel epidemic clone. . J Clin Microbiol 48:, 1223–1230. [CrossRef][PubMed]
    [Google Scholar]
  11. Goel N., Wattal C., Oberoi J. K., Raveendran R., Datta S., Prasad K. J.. ( 2011;). Trend analysis of antimicrobial consumption and development of resistance in non-fermenters in a tertiary care hospital in Delhi, India. . J Antimicrob Chemother 66:, 1625–1630. [CrossRef][PubMed]
    [Google Scholar]
  12. Hammer Q., Harper D. A. T., Ryan P. D.. ( 2001;). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9pp. .
  13. Harthug S., Digranes A., Hope O., Kristiansen B. E., Allum A. G., Langeland N.. ( 2000;). Vancomycin resistance emerging in a clonal outbreak caused by ampicillin-resistant Enterococcus faecium. . Clin Microbiol Infect 6:, 19–28. [CrossRef][PubMed]
    [Google Scholar]
  14. Hawkey P. M., Jones A. M.. ( 2009;). The changing epidemiology of resistance. . J Antimicrob Chemother 64: (Suppl 1), i3–i10. [CrossRef][PubMed]
    [Google Scholar]
  15. Imperi F., Antunes L. C., Blom J., Villa L., Iacono M., Visca P., Carattoli A.. ( 2011;). The genomics of Acinetobacter baumannii: insights into genome plasticity, antimicrobial resistance and pathogenicity. . IUBMB Life 63:, 1068–1074. [CrossRef][PubMed]
    [Google Scholar]
  16. Iosifidis E., Antachopoulos C., Tsivitanidou M., Katragkou A., Farmaki E., Tsiakou M., Kyriazi T., Sofianou D., Roilides E.. ( 2008;). Differential correlation between rates of antimicrobial drug consumption and prevalence of antimicrobial resistance in a tertiary care hospital in Greece. . Infect Control Hosp Epidemiol 29:, 615–622. [CrossRef][PubMed]
    [Google Scholar]
  17. Karunasagar A., Maiti B., Shekar M., Shenoy M S., Karunasagar I.. ( 2011;). Prevalence of OXA-type carbapenemase genes and genetic heterogeneity in clinical isolates of Acinetobacter spp. from Mangalore, India. . Microbiol Immunol 55:, 239–246. [CrossRef][PubMed]
    [Google Scholar]
  18. Lévesque C., Piché L., Larose C., Roy P. H.. ( 1995;). PCR mapping of integrons reveals several novel combinations of resistance genes. . Antimicrob Agents Chemother 39:, 185–191. [CrossRef][PubMed]
    [Google Scholar]
  19. MacGowan A. P., Bowker K. E., Bedford K. A., Holt H. A., Reeves D. S., Hedges A.. ( 1995;). The comparative inhibitory and bactericidal activities of meropenem and imipenem against Acinetobacter spp. and Enterobacteriaceae resistant to second generation cephalosporins. . J Antimicrob Chemother 35:, 333–337. [CrossRef][PubMed]
    [Google Scholar]
  20. Manikal V. M., Landman D., Saurina G., Oydna E., Lal H., Quale J.. ( 2000;). Endemic carbapenem-resistant Acinetobacter species in Brooklyn, New York: citywide prevalence, interinstitutional spread, and relation to antibiotic usage. . Clin Infect Dis 31:, 101–106. [CrossRef][PubMed]
    [Google Scholar]
  21. Mazel D., Dychinco B., Webb V. A., Davies J.. ( 2000;). Antibiotic resistance in the ECOR collection: integrons and identification of a novel aad gene. . Antimicrob Agents Chemother 44:, 1568–1574. [CrossRef][PubMed]
    [Google Scholar]
  22. Merkier A. K., Catalano M., Ramírez M. S., Quiroga C., Orman B., Ratier L., Famiglietti A., Vay C., Di Martino A.. & other authors ( 2008;). Polyclonal spread of bla(OXA-23) and bla(OXA-58) in Acinetobacter baumannii isolates from Argentina. . J Infect Dev Ctries 2:, 235–240.[PubMed]
    [Google Scholar]
  23. Monnet D. L.. ( 2006;). ABC Calc – Antibiotic consumption calculator (MS Excel application). V3.1. Copenhagen:: Statens Serum Institut;.
    [Google Scholar]
  24. Mózes J., Szűcs I., Molnár D., Jakab P., Fatemeh E., Szilasi M., Majoros L., Orosi P., Kardos G.. ( 2014;). A potential role of aminoglycoside resistance in endemic occurrence of Pseudomonas aeruginosa strains in lower airways of mechanically ventilated patients. . Diagn Microbiol Infect Dis 78:, 79–84. [CrossRef][PubMed]
    [Google Scholar]
  25. Ogutlu A., Guclu E., Karabay O., Utku A. C., Tuna N., Yahyaoglu M.. ( 2014;). Effects of Carbapenem consumption on the prevalence of Acinetobacter infection in intensive care unit patients. . Ann Clin Microbiol Antimicrob 13:, 7. [CrossRef][PubMed]
    [Google Scholar]
  26. Paul M., Weinberger M., Siegman-Igra Y., Lazarovitch T., Ostfeld I., Boldur I., Samra Z., Shula H., Carmeli Y.. & other authors ( 2005;). Acinetobacter baumannii: emergence and spread in Israeli hospitals 1997-2002. . J Hosp Infect 60:, 256–260. [CrossRef][PubMed]
    [Google Scholar]
  27. Poirel L., Nordmann P.. ( 2006;). Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. . Clin Microbiol Infect 12:, 826–836. [CrossRef][PubMed]
    [Google Scholar]
  28. Rogues A. M., Dumartin C., Amadéo B., Venier A. G., Marty N., Parneix P., Gachie J. P.. ( 2007;). Relationship between rates of antimicrobial consumption and the incidence of antimicrobial resistance in Staphylococcus aureus and Pseudomonas aeruginosa isolates from 47 French hospitals. . Infect Control Hosp Epidemiol 28:, 1389–1395. [CrossRef][PubMed]
    [Google Scholar]
  29. Suarez C., Peña C., Arch O., Dominguez M. A., Tubau F., Juan C., Gavaldá L., Sora M., Oliver A.. & other authors ( 2011;). A large sustained endemic outbreak of multiresistant Pseudomonas aeruginosa: a new epidemiological scenario for nosocomial acquisition. . BMC Infect Dis 11:, 272. [CrossRef][PubMed]
    [Google Scholar]
  30. Tsakris A., Ikonomidis A., Poulou A., Spanakis N., Vrizas D., Diomidous M., Pournaras S., Markou F.. ( 2008;). Clusters of imipenem-resistant Acinetobacter baumannii clones producing different carbapenemases in an intensive care unit. . Clin Microbiol Infect 14:, 588–594. [CrossRef][PubMed]
    [Google Scholar]
  31. Turton J. F., Ward M. E., Woodford N., Kaufmann M. E., Pike R., Livermore D. M., Pitt T. L.. ( 2006;). The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. . FEMS Microbiol Lett 258:, 72–77. [CrossRef][PubMed]
    [Google Scholar]
  32. Vainio S., van Doorn-Schepens M., Wilhelm A., Vandenbroucke-Grauls C., Murk J. L., Debets-Ossenkopp Y.. ( 2013;). Rapid selection of carbapenem-resistant Pseudomonas aeruginosa by clinical concentrations of ertapenem. . Int J Antimicrob Agents 41:, 492–494. [CrossRef][PubMed]
    [Google Scholar]
  33. Valenzuela J. K., Thomas L., Partridge S. R., van der Reijden T., Dijkshoorn L., Iredell J.. ( 2007;). Horizontal gene transfer in a polyclonal outbreak of carbapenem-resistant Acinetobacter baumannii. . J Clin Microbiol 45:, 453–460. [CrossRef][PubMed]
    [Google Scholar]
  34. Vila J., Ruiz J., Navia M., Becerril B., Garcia I., Perea S., Lopez-Hernandez I., Alamo I., Ballester F.. & other authors ( 1999;). Spread of amikacin resistance in Acinetobacter baumannii strains isolated in Spain due to an epidemic strain. . J Clin Microbiol 37:, 758–761.[PubMed]
    [Google Scholar]
  35. Villalón P., Valdezate S., Medina-Pascual M. J., Carrasco G., Vindel A., Saez-Nieto J. A.. ( 2013;). Epidemiology of the Acinetobacter-derived cephalosporinase, carbapenem-hydrolysing oxacillinase and metallo-β-lactamase genes, and of common insertion sequences, in epidemic clones of Acinetobacter baumannii from Spain. . J Antimicrob Chemother 68:, 550–553. [CrossRef][PubMed]
    [Google Scholar]
  36. Villar H. E., Laurino G., Arena M. F., Hoffman M.. ( 1997;). [Selection of resistance mutants and bacteriostatic and bactericidal activity of meropenem and imipenem against Acinetobacter spp.]. . Enferm Infecc Microbiol Clin 15:, 140–143 (in Spanish).[PubMed]
    [Google Scholar]
  37. Walther-Rasmussen J., Høiby N.. ( 2006;). OXA-type carbapenemases. . J Antimicrob Chemother 57:, 373–383. [CrossRef][PubMed]
    [Google Scholar]
  38. White D. G., Zhao S., Sudler R., Ayers S., Friedman S., Chen S., McDermott P. F., McDermott S., Wagner D. D., Meng J.. ( 2001;). The isolation of antibiotic-resistant salmonella from retail ground meats. . N Engl J Med 345:, 1147–1154. [CrossRef][PubMed]
    [Google Scholar]
  39. Woodford N., Ellington M. J., Coelho J. M., Turton J. F., Ward M. E., Brown S., Amyes S. G., Livermore D. M.. ( 2006;). Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp.. Int J Antimicrob Agents 27:, 351–353. [CrossRef][PubMed]
    [Google Scholar]
  40. Xu J., Sun Z., Li Y., Zhou Q.. ( 2013;). Surveillance and correlation of antibiotic consumption and resistance of Acinetobacter baumannii complex in a tertiary care hospital in northeast China, 2003–2011. . Int J Environ Res Public Health 10:, 1462–1473. [CrossRef][PubMed]
    [Google Scholar]
  41. Zarrilli R., Crispino M., Bagattini M., Barretta E., Di Popolo A., Triassi M., Villari P.. ( 2004;). Molecular epidemiology of sequential outbreaks of Acinetobacter baumannii in an intensive care unit shows the emergence of carbapenem resistance. . J Clin Microbiol 42:, 946–953. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.082818-0
Loading
/content/journal/jmm/10.1099/jmm.0.082818-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error