1887

Abstract

Several fungal diseases have become serious threats to human health and life, especially upon the advent of human immunodeficiency virus/AIDS epidemics and of other typical immunosuppressive conditions of modern life. Accordingly, the burden posed by these diseases and, concurrently, by intensive therapeutic regimens against these diseases has increased worldwide. Existing and available rapid tests for point-of-care diagnosis of important fungal diseases could enable the limitations of current laboratory methods for detection and identification of medically important fungi to be surpassed, both in low-income countries and for first-line diagnosis (screening) in richer countries. As with conventional diagnostic methods and devices, former immunodiagnostics have been challenged by molecular biology-based platforms, as a way to enhance the sensitivity and shorten the assay time, thus enabling early and more accurate diagnosis. Most of these tests have been developed in-house, without adequate validation and standardization. Another challenge has been the DNA extraction step, which is especially critical when dealing with fungi. In this paper, we have identified three major research trends in this field: (1) the application of newer biorecognition techniques, often applied in analytical chemistry; (2) the development of new materials with improved physico-chemical properties; and (3) novel bioanalytical platforms, allowing fully automated testing. Keeping up to date with the fast technological advances registered in this field, primarily at the proof-of-concept level, is essential for wise assessment of those that are likely to be more cost effective and, as already observed for bacterial and viral pathogens, may provide leverage to the current tepid developmental status of novel and improved diagnostics for medical mycology.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.082297-0
2015-04-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/4/315.html?itemId=/content/journal/jmm/10.1099/jmm.0.082297-0&mimeType=html&fmt=ahah

References

  1. Alexander B. D., Pfaller M. A.. ( 2006;). Contemporary tools for the diagnosis and management of invasive mycosis. . Clin Infect Dis 43: (Suppl. 1), S15–S27. [CrossRef]
    [Google Scholar]
  2. Algar W. R., Massey M., Krull U. J.. ( 2009;). The application of quantum dots, gold nanoparticles and molecular switches to optical nucleic-acid diagnostics. . Trends Analyt Chem 28:, 292–306. [CrossRef]
    [Google Scholar]
  3. Archibald L. K., McDonald L. C., Addison R. M., McKnight C., Byrne T., Dobbie H., Nwanyanwu O., Kazembe P., Reller L. B., Jarvis W. R.. ( 2000;). Comparison of BACTEC MYCO/F LYTIC and WAMPOLE ISOLATOR 10 (lysis-centrifugation) systems for detection of bacteremia, mycobacteremia, and fungemia in a developing country. . J Clin Microbiol 38:, 2994–2997.[PubMed]
    [Google Scholar]
  4. Arvanitis M., Anagnostou T., Fuchs B. B., Caliendo A. M., Mylonakis E.. ( 2014;). Molecular and nonmolecular diagnostic methods for invasive fungal infections. . Clin Microbiol Rev 27:, 490–526. [CrossRef][PubMed]
    [Google Scholar]
  5. Balajee S. A., Borman A. M., Brandt M. E., Cano J., Cuenca-Estrella M., Dannaoui E., Guarro J., Haase G., Kibbler C. C. et al. ( 2009;). Sequence-based identification of Aspergillus, Fusarium, and Mucorales species in the clinical mycology laboratory: where are we and where should we go from here?. J Clin Microbiol 47:, 877–884. [CrossRef][PubMed]
    [Google Scholar]
  6. Chandrasekar P.. ( 2010;). Diagnostic challenges and recent advances in the early management of invasive fungal infections. . Eur J Haematol 84:, 281–290. [CrossRef][PubMed]
    [Google Scholar]
  7. Choi S., Goryll M., Sin L. Y. M., Wong P. K., Chae J.. ( 2011;). Microfluidic-based biosensors toward point-of-care detection of nucleic acids and proteins. . Microfluidics Nanofluidics 10:, 231–247. [CrossRef]
    [Google Scholar]
  8. Cooper R. M., Leslie D. C., Domansky K., Jain A., Yung C., Cho M., Workman S., Super M., Ingber D. E.. ( 2014;). A microdevice for rapid optical detection of magnetically captured rare blood pathogens. . Lab Chip 14:, 182–188. [CrossRef][PubMed]
    [Google Scholar]
  9. De Carolis E., Posteraro B., Lass-Flörl C., Vella A., Florio A. R., Torelli R., Girmenia C., Colozza C., Tortorano A. M. et al. ( 2012;). Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. . Clin Microbiol Infect 18:, 475–484. [CrossRef][PubMed]
    [Google Scholar]
  10. de Heer K., van der Schee M. P., Zwinderman K., van den Berk I. A. H., Visser C. E., van Oers R., Sterk P. J.. ( 2013;). Electronic nose technology for detection of invasive pulmonary aspergillosis in prolonged chemotherapy-induced neutropenia: a proof-of-principle study. . J Clin Microbiol 51:, 1490–1495. [CrossRef][PubMed]
    [Google Scholar]
  11. Dhiman N., Hall L., Wohlfiel S. L., Buckwalter S. P., Wengenack N. L.. ( 2011;). Performance and cost analysis of matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine identification of yeast. . J Clin Microbiol 49:, 1614–1616. [CrossRef][PubMed]
    [Google Scholar]
  12. Dufresne S. F., Datta K., Li X., Dadachova E., Staab J. F., Patterson T. F., Feldmesser M., Marr K. A.. ( 2012;). Detection of urinary excreted fungal galactomannan-like antigens for diagnosis of invasive aspergillosis. . PLoS ONE 7:, e42736. [CrossRef][PubMed]
    [Google Scholar]
  13. Forrest G. N., Mankes K., Jabra-Rizk M. A., Weekes E., Johnson J. K., Lincalis D. P., Venezia R. A.. ( 2006;). Peptide nucleic acid fluorescence in situ hybridization-based identification of Candida albicans and its impact on mortality and antifungal therapy costs. . J Clin Microbiol 44:, 3381–3383. [CrossRef][PubMed]
    [Google Scholar]
  14. Fortina P., Wang J., Surrey S., Park J. Y., Kricka L. J.. ( 2007;). Beyond microtechnology – nanotechnology in molecular diagnosis. . In Integrated Biochips for DNA Analysis, pp. 187–197. Edited by Liu R. H., Lee A. P... New York, NY:: Landes Bioscience and Springer Science+Business Media;. [CrossRef]
    [Google Scholar]
  15. Gómez B. L.. ( 2014;). Molecular diagnosis of endemic and invasive mycoses: advances and challenges. . Rev Iberoam Micol 31:, 35–41. [CrossRef][PubMed]
    [Google Scholar]
  16. Hsiao C. R., Huang L., Bouchara J. P., Barton R., Li H. C., Chang T. C.. ( 2005;). Identification of medically important molds by an oligonucleotide array. . J Clin Microbiol 43:, 3760–3768. [CrossRef][PubMed]
    [Google Scholar]
  17. Iwen P. C., Hinrichs S. H., Rupp M. E.. ( 2002;). Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens. . Med Mycol 40:, 87–109. [CrossRef][PubMed]
    [Google Scholar]
  18. Jarvis J. N., Percival A., Bauman S., Pelfrey J., Meintjes G., Williams G. N., Longley N., Harrison T. S., Kozel T. R.. ( 2011;). Evaluation of a novel point-of-care cryptococcal antigen test on serum, plasma, and urine from patients with HIV-associated cryptococcal meningitis. . Clin Infect Dis 53:, 1019–1023. [CrossRef][PubMed]
    [Google Scholar]
  19. Kessler H. H., Mühlbauer G., Stelzl E., Daghofer E., Santner B. I., Marth E.. ( 2001;). Fully automated nucleic acid extraction: MagNA Pure LC. . Clin Chem 47:, 1124–1126.[PubMed]
    [Google Scholar]
  20. Lacroix C., Gicquel A., Sendid B., Meyer J., Accoceberry I., François N., Morio F., Desoubeaux G., Chandenier J. et al. ( 2014;). Evaluation of two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems for the identification of Candida species. . Clin Microbiol Infect 20:, 153–158. [CrossRef][PubMed]
    [Google Scholar]
  21. Lee W. G., Kim Y.-G., Chung B. G., Demirci U., Khademhosseini A.. ( 2010;). Nano/microfluidics for diagnosis of infectious diseases in developing countries. . Adv Drug Deliv Rev 62:, 449–457. [CrossRef][PubMed]
    [Google Scholar]
  22. Lindsley M. D., Mekha N., Baggett H. C., Surinthong Y., Autthateinchai R., Sawatwong P., Harris J. R., Park B. J., Chiller T. et al. ( 2011;). Evaluation of a newly developed lateral flow immunoassay for the diagnosis of cryptococcosis. . Clin Infect Dis 53:, 321–325. [CrossRef][PubMed]
    [Google Scholar]
  23. Loeffler J., Hebart H., Cox P., Flues N., Schumacher U., Einsele H.. ( 2001;). Nucleic acid sequence-based amplification of Aspergillus RNA in blood samples. . J Clin Microbiol 39:, 1626–1629. [CrossRef][PubMed]
    [Google Scholar]
  24. Maertens J., Verhaegen J., Lagrou K., Van Eldere J., Boogaerts M.. ( 2001;). Screening for circulating galactomannan as a noninvasive diagnostic tool for invasive aspergillosis in prolonged neutropenic patients and stem cell transplantation recipients: a prospective validation. . Blood 97:, 1604–1610. [CrossRef][PubMed]
    [Google Scholar]
  25. Marot-Leblond A., Grimaud L., David S., Sullivan D. J., Coleman D. C., Ponton J., Robert R.. ( 2004;). Evaluation of a rapid immunochromatographic assay for identification of Candida albicans and Candida dubliniensis. . J Clin Microbiol 42:, 4956–4960. [CrossRef][PubMed]
    [Google Scholar]
  26. Martins J. F. S., Castilho M. L., Cardoso M. A. G., Carreiro A. P., Martin A. A., Raniero L.. ( 2012;). Identification of Paracoccidioides brasiliensis by gold nanoprobes. . Proc SPIE 8219:, 82190Z. [CrossRef]
    [Google Scholar]
  27. McNeil M. M., Nash S. L., Hajjeh R. A., Phelan M. A., Conn L. A., Plikaytis B. D., Warnock D. W.. ( 2001;). Trends in mortality due to invasive mycotic diseases in the United States, 1980–1997. . Clin Infect Dis 33:, 641–647. [CrossRef][PubMed]
    [Google Scholar]
  28. McTaggart L. R., Lei E., Richardson S. E., Hoang L., Fothergill A., Zhang S. X.. ( 2011;). Rapid identification of Cryptococcus neoformans and Cryptococcus gattii by matrix-assisted laser desorption ionization-time of flight mass spectrometry. . J Clin Microbiol 49:, 3050–3053. [CrossRef][PubMed]
    [Google Scholar]
  29. Mennink-Kersten M. A. S. H., Donnelly J. P., Verweij P. E.. ( 2004;). Detection of circulating galactomannan for the diagnosis and management of invasive aspergillosis. . Lancet Infect Dis 4:, 349–357. [CrossRef][PubMed]
    [Google Scholar]
  30. Miyazaki T., Kohno S., Mitsutake K., Maesaki S., Tanaka K., Ishikawa N., Hara K.. ( 1995;). Plasma (1→3)-β-d-glucan and fungal antigenemia in patients with candidemia, aspergillosis, and cryptococcosis. . J Clin Microbiol 33:, 3115–3118.[PubMed]
    [Google Scholar]
  31. Mulero R., Lee D. H., Kutzler M. A., Jacobson J. M., Kim M. J.. ( 2009;). Ultra-fast low concentration detection of Candida pathogens utilizing high resolution micropore chips. . Sensors (Basel) 9:, 1590–1598. [CrossRef][PubMed]
    [Google Scholar]
  32. Naja G., Hrapovic S., Male K., Bouvrette P., Luong J. H.. ( 2008;). Rapid detection of microorganisms with nanoparticles and electron microscopy. . Microsc Res Tech 71:, 742–748. [CrossRef][PubMed]
    [Google Scholar]
  33. Neely L. A., Audeh M., Phung N. A., Min M., Suchocki A., Plourde D., Blanco M., Demas V., Skewis L. R. et al. ( 2013;). T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. . Sci Transl Med 5:, 182ra54. [CrossRef][PubMed]
    [Google Scholar]
  34. Nugaeva N., Gfeller K. Y., Backmann N., Lang H. P., Düggelin M., Hegner M.. ( 2005;). Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. . Biosens Bioelectron 21:, 849–856. [CrossRef][PubMed]
    [Google Scholar]
  35. Odabasi Z., Mattiuzzi G., Estey E., Kantarjian H., Saeki F., Ridge R. J., Ketchum P. A., Finkelman M. A., Rex J. H., Ostrosky-Zeichner L.. ( 2004;). Beta-d-glucan as a diagnostic adjunct for invasive fungal infections: validation, cutoff development, and performance in patients with acute myelogenous leukemia and myelodysplastic syndrome. . Clin Infect Dis 39:, 199–205. [CrossRef][PubMed]
    [Google Scholar]
  36. Park B. J., Wannemuehler K. A., Marston B. J., Govender N., Pappas P. G., Chiller T. M.. ( 2009;). Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. . AIDS 23:, 525–530. [CrossRef][PubMed]
    [Google Scholar]
  37. Peeling R. W., Holmes K. K., Mabey D., Ronald A.. ( 2006;). Rapid tests for sexually transmitted infections (STIs): the way forward. . Sex Transm Infect 82: (Suppl. 5), v1–v6. [CrossRef][PubMed]
    [Google Scholar]
  38. Pumera M., Sánchez S., Ichinose I., Tang J.. ( 2007;). Electrochemical nanobiosensors. . Sensors Actuators B 123:, 1195–1205. [CrossRef]
    [Google Scholar]
  39. Rickerts V., Khot P. D., Myerson D., Ko D. L., Lambrecht E., Fredricks D. N.. ( 2011;). Comparison of quantitative real time PCR with sequencing and ribosomal RNA-FISH for the identification of fungi in formalin fixed, paraffin-embedded tissue specimens. . BMC Infect Dis 11:, 202. [CrossRef][PubMed]
    [Google Scholar]
  40. Rigby S., Procop G. W., Haase G., Wilson D., Hall G., Kurtzman C., Oliveira K., Von Oy S., Hyldig-Nielsen J. J. et al. ( 2002;). Fluorescence in situ hybridization with peptide nucleic acid probes for rapid identification of Candida albicans directly from blood culture bottles. . J Clin Microbiol 40:, 2182–2186. [CrossRef][PubMed]
    [Google Scholar]
  41. Schell W. A., Benton J. L., Smith P. B., Poore M., Rouse J. L., Boles D. J., Johnson M. D., Alexander B. D., Pamula V. K. et al. ( 2012;). Evaluation of a digital microfluidic real-time PCR platform to detect DNA of Candida albicans in blood. . Eur J Clin Microbiol Infect Dis 31:, 2237–2245. [CrossRef][PubMed]
    [Google Scholar]
  42. Schoch C. L., Seifert K. A., Huhndorf S., Robert V., Spouge J. L., Levesque C. A., Chen W., Bolchacova E., Voigt K. et al. ( 2012;). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. . Proc Natl Acad Sci U S A 109:, 6241–6246. [CrossRef][PubMed]
    [Google Scholar]
  43. Spanu T., Posteraro B., Fiori B., D’Inzeo T., Campoli S., Ruggeri A., Tumbarello M., Canu G., Trecarichi E. M. et al. ( 2012;). Direct MALDI-TOF mass spectrometry assay of blood culture broths for rapid identification of Candida species causing bloodstream infections: an observational study in two large microbiology laboratories. . J Clin Microbiol 50:, 176–179. [CrossRef][PubMed]
    [Google Scholar]
  44. Teles F.. ( 2013;). Biosensors for medical mycology. . In Biosensors and their Application in Healthcare, pp. 88–111. Edited by Ozkan-Ariksoysal D... London:: Future Science;.
    [Google Scholar]
  45. Teles F. R. R., Martins M. L.. ( 2011;). Laboratorial diagnosis of paracoccidioidomycosis and new insights for the future of fungal diagnosis. . Talanta 85:, 2254–2264. [CrossRef][PubMed]
    [Google Scholar]
  46. Thornton C. R.. ( 2008;). Development of an immunochromatographic lateral-flow device for rapid serodiagnosis of invasive aspergillosis. . Clin Vaccine Immunol 15:, 1095–1105. [CrossRef][PubMed]
    [Google Scholar]
  47. Vilchez R. A., Fung J., Kusne S.. ( 2002;). Cryptococcosis in organ transplant recipients: an overview. . Am J Transplant 2:, 575–580. [CrossRef][PubMed]
    [Google Scholar]
  48. Villamizar R. A., Maroto A., Rius F. X.. ( 2009;). Improved detection of Candida albicans with carbon nanotube field-effect transistors. . Sensors Actuators B 136:, 451–457. [CrossRef]
    [Google Scholar]
  49. Wheat L. J., Garringer T., Brizendine E., Connolly P.. ( 2002;). Diagnosis of histoplasmosis by antigen detection based upon experience at the histoplasmosis reference laboratory. . Diagn Microbiol Infect Dis 43:, 29–37. [CrossRef][PubMed]
    [Google Scholar]
  50. WHO (2014). Antimicrobial resistance: global report on surveillance 2014. Geneva, Switzerland: World Health Organization. http://www.who.int/drugresistance/documents/surveillancereport/en/
  51. Yeo S. F., Wong B.. ( 2002;). Current status of nonculture methods for diagnosis of invasive fungal infections. . Clin Microbiol Rev 15:, 465–484. [CrossRef][PubMed]
    [Google Scholar]
  52. Yoo S. M., Kang T., Kang H., Lee H., Kang M., Lee S. Y., Kim B.. ( 2011;). Combining a nanowire SERRS sensor and a target recycling reaction for ultrasensitive and multiplex identification of pathogenic fungi. . Small 7:, 3371–3376. [CrossRef][PubMed]
    [Google Scholar]
  53. Zhang S. X.. ( 2013;). Enhancing molecular approaches for diagnosis of fungal infections. . Future Microbiol 8:, 1599–1611. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.082297-0
Loading
/content/journal/jmm/10.1099/jmm.0.082297-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error