1887

Abstract

This study aimed to assess the molecular basis of the resistance to carbapenems in clinical isolates of recovered from a tertiary-level health facility in San José, Costa Rica. A total of 198 non-duplicated isolates were evaluated for their susceptibility to β-lactams, aminoglycosides and fluoroquinolones. The production of metallo-β-lactamases (MBLs), the presence of MBL encoding genes ( , and ) and the occurrence of these genes within class 1 integrons were investigated. In addition, an PCR fingerprinting method was used to elucidate the distribution of the detected MBL genes within the strain collection. Of the 198 isolates tested, 125 (63.1 %) were categorized as carbapenem-resistant. The majority (88.8 %) of the carbapemen-resistant isolates also showed resistance to ceftazidime, cefepime, aztreonam, ticarcillin/clavulanic acid, amikacin, gentamicin, tobramycin, ciprofloxacin and gatifloxacin. Among the carbapenem-resistant isolates, 102 (81.6 %) showed MBL activity. Strikingly, both and genes were simultaneously detected in most (94.1 %) of the 102 MBL producers. Five carbapenem-resistant MBL producers were positive only for genes. Almost 70 % of the isolates examined harboured the gene, accompanied by the and genes in 136 (99 %) and 122 (89 %) isolates, respectively. The majority (94.4 %) of the carbapenem-resistant isolates carried the gene, in contrast to 26 % of the carbapenem-susceptible isolates. Ninety-three out of 96 (96.9 %) isolates carrying both and genes also harboured the , and genes. Gene cassettes from carbapenem-susceptible and MBL-negative carbapenem-resistant isolates encoded aminoglycoside-resistance enzymes (, and ) as well as and genes. RAPD analysis distributed 126 of the isolates in 29 clusters. Eighty of the 90 isolates were sorted into 16 different clusters, suggesting that the and genes detected were located within a genetic element capable of lateral transfer. Carbapenem-resistant MBL-positive isolates were recovered from almost all hospital wards and were over-represented in samples obtained from the surgical emergency and intensive care therapy units. Remarkably, three carbapenem-resistant isolates, exhibiting MBL activity and carrying both and genes, were recovered from outpatients. Sequence analysis of both genes in various isolates revealed that they correspond to the alleles and . To our knowledge, this is the first report of the combination of two metallo-β-lactamases encoded by the and genes in .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.081802-0
2015-01-01
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/1/37.html?itemId=/content/journal/jmm/10.1099/jmm.0.081802-0&mimeType=html&fmt=ahah

References

  1. Andrade S. S., Jones R. N., Gales A. C., Sader H. S. 2003; Increasing prevalence of antimicrobial resistance among Pseudomonas aeruginosa isolates in Latin American medical centres: 5 year report of the SENTRY Antimicrobial Surveillance Program (1997-2001). J Antimicrob Chemother 52:140–141 [View Article][PubMed]
    [Google Scholar]
  2. Bebrone C., Bogaerts P., Delbrück H., Bennink S., Kupper M. B., Rezende de Castro R., Glupczynski Y., Hoffmann K. M. 2013; GES-18, a new carbapenem-hydrolyzing GES-Type β-lactamase from Pseudomonas aeruginosa that contains Ile80 and Ser170 residues. Antimicrob Agents Chemother 57:396–401 [View Article][PubMed]
    [Google Scholar]
  3. Borgianni L., Prandi S., Salden L., Santella G., Hanson N. D., Rossolini G. M., Docquier J.-D. 2011; Genetic context and biochemical characterization of the IMP-18 metallo-β-lactamase identified in a Pseudomonas aeruginosa isolate from the United States. Antimicrob Agents Chemother 55:140–145 [View Article][PubMed]
    [Google Scholar]
  4. Breidenstein E. B. M., de la Fuente-Núñez C., Hancock R. E. W. 2011; Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19:419–426 [View Article][PubMed]
    [Google Scholar]
  5. Castillo-Vera J., Ribas-Aparicio R. M., Nicolau C. J., Oliver A., Osorio-Carranza L., Aparicio-Ozores G. 2012; Unusual diversity of acquired β-lactamases in multidrug-resistant Pseudomonas aeruginosa isolates in a Mexican hospital. Microb Drug Resist 18:471–478 [View Article][PubMed]
    [Google Scholar]
  6. Cornaglia G., Giamarellou H., Rossolini G. M. 2011; Metallo-β-lactamases: a last frontier for β-lactams?. Lancet Infect Dis 11:381–393 [View Article][PubMed]
    [Google Scholar]
  7. Dwivedi M., Mishra A., Azim A., Singh R. K., Baronia A. K., Prasad K. N., Dhole T. N., Dwivedi U. N. 2009; Ventilator-associated pneumonia caused by carbapenem-resistant Enterobacteriaceae carrying multiple metallo-β-lactamase genes. Indian J Pathol Microbiol 52:339–342 [View Article][PubMed]
    [Google Scholar]
  8. El Garch F., Bogaerts P., Bebrone C., Galleni M., Glupczynski Y. 2011; OXA-198, an acquired carbapenem-hydrolyzing class D β-lactamase from Pseudomonas aeruginosa.. Antimicrob Agents Chemother 55:4828–4833 [View Article][PubMed]
    [Google Scholar]
  9. Foca M. D. 2002; Pseudomonas aeruginosa infections in the neonatal intensive care unit. Semin Perinatol 26:332–339 [View Article][PubMed]
    [Google Scholar]
  10. Garau J., Gomez L. 2003; Pseudomonas aeruginosa pneumonia. Curr Opin Infect Dis 16:135–143 [View Article][PubMed]
    [Google Scholar]
  11. Garza-Ramos U., Tinoco P., Silva-Sanchez J., Morfin-Otero R., Rodriguez-Noriega E., Leon-Garnica G., Sader H. S., Jones R. N. 2008; Metallo-β-lactamase IMP-18 is located in a class 1 integron (In96) in a clinical isolate of Pseudomonas aeruginosa from Mexico. Int J Antimicrob Agents 31:78–80 [View Article][PubMed]
    [Google Scholar]
  12. Hanson N. D., Hossain A., Buck L., Moland E. S., Thomson K. S. 2006; First occurrence of a Pseudomonas aeruginosa isolate in the United States producing an IMP metallo-β-lactamase, IMP-18. Antimicrob Agents Chemother 50:2272–2273 [View Article][PubMed]
    [Google Scholar]
  13. Hocquet D., Plésiat P., Dehecq B., Mariotte P., Talon D., Bertrand X.ONERBA 2010; Nationwide investigation of extended-spectrum β-lactamases, metallo-β-lactamases, and extended-spectrum oxacillinases produced by ceftazidime-resistant Pseudomonas aeruginosa strains in France. Antimicrob Agents Chemother 54:3512–3515 [View Article][PubMed]
    [Google Scholar]
  14. Klockgether J., Cramer N., Wiehlmann L., Davenport C. F., Tümmler B. 2011; Pseudomonas aeruginosa genomic structure and diversity. Front Microbiol 2:150 [View Article][PubMed]
    [Google Scholar]
  15. Lambert P. A. 2002; Mechanisms of antibiotic resistance in Pseudomonas aeruginosa.. J R Soc Med 95:Suppl 4122–26[PubMed]
    [Google Scholar]
  16. Lee M. F., Peng C. F., Hsu H. J., Chen Y. H. 2008; Molecular characterisation of the metallo-β-lactamase genes in imipenem-resistant Gram-negative bacteria from a university hospital in southern Taiwan. Int J Antimicrob Agents 32:475–480 [View Article][PubMed]
    [Google Scholar]
  17. Lee K., Kim C. K., Hong S. G., Choi J., Song S., Koh E., Yong D., Jeong S. H., Yum J. H.& other authors ( 2010; Characteristics of clinical isolates of Acinetobacter genomospecies 10 carrying two different metallo-β-lactamases. Int J Antimicrob Agents 36:259–263 [View Article][PubMed]
    [Google Scholar]
  18. Lévesque C., Piché L., Larose C., Roy P. H. 1995; PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother 39:185–191 [View Article][PubMed]
    [Google Scholar]
  19. Lister P. D., Wolter D. J., Hanson N. D. 2009; Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22:582–610 [View Article][PubMed]
    [Google Scholar]
  20. Martinez E., Marquez C., Ingold A., Merlino J., Djordjevic S. P., Stokes H. W., Chowdhury P. R. 2012; Diverse mobilized class 1 integrons are common in the chromosomes of pathogenic Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 56:2169–2172 [View Article][PubMed]
    [Google Scholar]
  21. Maschmeyer G., Braveny I. 2000; Review of the incidence and prognosis of Pseudomonas aeruginosa infections in cancer patients in the 1990s. Eur J Clin Microbiol Infect Dis 19:915–925 [View Article][PubMed]
    [Google Scholar]
  22. Master R. N., Clark R. B., Karlowsky J. A., Ramirez J., Bordon J. M. 2011; Analysis of resistance, cross-resistance and antimicrobial combinations for Pseudomonas aeruginosa isolates from 1997 to 2009. Int J Antimicrob Agents 38:291–295 [View Article][PubMed]
    [Google Scholar]
  23. Mendes R. E., Kiyota K. A., Monteiro J., Castanheira M., Andrade S. S., Gales A. C., Pignatari A. C. C., Tufik S. 2007; Rapid detection and identification of metallo-β-lactamase-encoding genes by multiplex real-time PCR assay and melt curve analysis. J Clin Microbiol 45:544–547 [View Article][PubMed]
    [Google Scholar]
  24. Morrison A. J. Jr, Wenzel R. P. 1984; Epidemiology of infections due to Pseudomonas aeruginosa.. Rev Infect Dis 6:Suppl 3S627–S642 [View Article][PubMed]
    [Google Scholar]
  25. Nicolau C. J., Oliver A. 2010; Carbapenemases in Pseudomonas spp.. Enferm Infecc Microbiol Clin 28:Suppl 119–28 [View Article][PubMed]
    [Google Scholar]
  26. Pallecchi L., Riccio M. L., Docquier J. D., Fontana R., Rossolini G. M. 2001; Molecular heterogeneity of bla(VIM-2)-containing integrons from Pseudomonas aeruginosa plasmids encoding the VIM-2 metallo-β-lactamase. FEMS Microbiol Lett 195:145–150[PubMed]
    [Google Scholar]
  27. Poirel L., Naas T., Nicolas D., Collet L., Bellais S., Cavallo J. D., Nordmann P. 2000; Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother 44:891–897 [View Article][PubMed]
    [Google Scholar]
  28. Poirel L., Lambert T., Türkoglü S., Ronco E., Gaillard J. L., Nordmann P. 2001; Characterization of Class 1 integrons from Pseudomonas aeruginosa that contain the bla(VIM-2) carbapenem-hydrolyzing β-lactamase gene and of two novel aminoglycoside resistance gene cassettes. Antimicrob Agents Chemother 45:546–552 [View Article][PubMed]
    [Google Scholar]
  29. Pollini S., Maradei S., Pecile P., Olivo G., Luzzaro F., Docquier J.-D., Rossolini G. M. 2013; FIM-1, a new acquired metallo-β-lactamase from a Pseudomonas aeruginosa clinical isolate from Italy. Antimicrob Agents Chemother 57:410–416 [View Article][PubMed]
    [Google Scholar]
  30. Rajan S., Saiman L. 2002; Pulmonary infections in patients with cystic fibrosis. Semin Respir Infect 17:47–56 [View Article][PubMed]
    [Google Scholar]
  31. Rosser S. J., Young H. K. 1999; Identification and characterization of class 1 integrons in bacteria from an aquatic environment. J Antimicrob Chemother 44:11–18 [View Article][PubMed]
    [Google Scholar]
  32. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Sevillano E., Gallego L., García-Lobo J. M. 2009; First detection of the OXA-40 carbapenemase in P. aeruginosa isolates, located on a plasmid also found in A. baumannii.. Pathol Biol (Paris) 57:493–495 [View Article][PubMed]
    [Google Scholar]
  34. Silby M. W., Winstanley C., Godfrey S. A. C., Levy S. B., Jackson R. W. 2011; Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35:652–680 [View Article][PubMed]
    [Google Scholar]
  35. Speijer H., Savelkoul P. H., Bonten M. J., Stobberingh E. E., Tjhie J. H. 1999; Application of different genotyping methods for Pseudomonas aeruginosa in a setting of endemicity in an intensive care unit. J Clin Microbiol 37:3654–3661[PubMed]
    [Google Scholar]
  36. Talbot G. H., Bradley J., Edwards J. E. Jr, Gilbert D., Scheld M., Bartlett J. G.Antimicrobial Availability Task Force of the Infectious Diseases Society of America 2006; Bad bugs need drugs: an update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin Infect Dis 42:657–668 [View Article][PubMed]
    [Google Scholar]
  37. Villegas M. V., Lolans K., Correa A., Kattan J. N., Lopez J. A., Quinn J. P.Colombian Nosocomial Resistance Study Group 2007; First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing beta-lactamase. Antimicrob Agents Chemother 51:1553–1555 [View Article][PubMed]
    [Google Scholar]
  38. Walsh T. R., Toleman M. A., Poirel L., Nordmann P. 2005; Metallo-β-lactamases: the quiet before the storm?. Clin Microbiol Rev 18:306–325 [View Article][PubMed]
    [Google Scholar]
  39. Watanabe M., Iyobe S., Inoue M., Mitsuhashi S. 1991; Transferable imipenem resistance in Pseudomonas aeruginosa.. Antimicrob Agents Chemother 35:147–151 [View Article][PubMed]
    [Google Scholar]
  40. Wolter D. J., Khalaf N., Robledo I. E., Vázquez G. J., Santé M. I., Aquino E. E., Goering R. V., Hanson N. D. 2009; Surveillance of carbapenem-resistant Pseudomonas aeruginosa isolates from Puerto Rican Medical Center Hospitals: dissemination of KPC and IMP-18 beta-lactamases. Antimicrob Agents Chemother 53:1660–1664 [View Article][PubMed]
    [Google Scholar]
  41. Yatsuyanagi J., Saito S., Harata S., Suzuki N., Ito Y., Amano K., Enomoto K. 2004; Class 1 integron containing metallo-β-lactamase gene blaVIM-2 in Pseudomonas aeruginosa clinical strains isolated in Japan. Antimicrob Agents Chemother 48:626–628 [View Article][PubMed]
    [Google Scholar]
  42. Zhao W. H., Hu Z. Q. 2011a; IMP-type metallo-β-lactamases in Gram-negative bacilli: distribution, phylogeny, and association with integrons. Crit Rev Microbiol 37:214–226 [View Article][PubMed]
    [Google Scholar]
  43. Zhao W. H., Hu Z. Q. 2011b; Epidemiology and genetics of VIM-type metallo-β-lactamases in Gram-negative bacilli. Future Microbiol 6:317–333 [View Article][PubMed]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.081802-0
Loading
/content/journal/jmm/10.1099/jmm.0.081802-0
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error