1887

Abstract

Antibiotic-resistant bacteria have emerged from the widespread use of antibiotics worldwide and have prompted the search for new sources of antimicrobial substances. spp. contain several bioactive compounds consisting mainly of terpenes, terpenoids and some other aromatic and aliphatic constituents. These compounds exert important biological effects, and pine oils have found wide application in the industry. In the present study, we have evaluated the potential activity of the resin-oil of and its major compound dehydroabietic acid (DA) against multiresistant bacteria by MIC, minimum bactericidal concentration and time-kill assays. The MIC of the resin-oil of varied between 25 and 100 µg ml. As for DA, the MIC and minimum bactericidal concentration varied between 6.25 and 50 and between 6.25 and 100 µg ml, respectively. The time-kill assay conducted with DA at 6.25 µg ml evidenced bactericidal activity against (American Type Culture Collection 14990) within 24 h. On the basis of these results, the resin-oil of and its major compound DA play an important part in the search for novel sources of agents that can act against multiresistant bacteria.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.081711-0
2014-12-01
2021-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/12/1649.html?itemId=/content/journal/jmm/10.1099/jmm.0.081711-0&mimeType=html&fmt=ahah

References

  1. Ahmad I., Beg A. Z. 2001; Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J Ethnopharmacol 74:113–123 [View Article][PubMed]
    [Google Scholar]
  2. Ambrosio S. R., Furtado N. A. J. C., de Oliveira D. C. R., da Costa F. B., Martins C. H., de Carvalho T. C., Porto T. S., Veneziani R. C. 2008; Antimicrobial activity of kaurane diterpenes against oral pathogens. Z Naturforsch C 63:326–330[PubMed] [CrossRef]
    [Google Scholar]
  3. Araújo E. A., de Andrade N. J., de Carvalho A. F., Ramos A. M., Silva C. A. de S., da Silva L. H. M. 2010; Colloidal aspects of bacterial adhesion. Quim Nova 33:1940–1948 [CrossRef]
    [Google Scholar]
  4. Bennett P. M. 2008; Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol 153:Suppl 1S347–S357 [View Article][PubMed]
    [Google Scholar]
  5. Beveridge T. J. 1999; Structures of Gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733[PubMed]
    [Google Scholar]
  6. Burt S. 2004; Essential oils: their antibacterial properties and potential applications in foods – a review. Int J Food Microbiol 94:223–253 [View Article][PubMed]
    [Google Scholar]
  7. CLSI 2009 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard , 8th edn. M7-A8. Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  8. Coelho J. R., Carriço J. A., Knight D., Martínez J. L., Morrissey I., Oggioni M. R., Freitas A. T. 2013; The use of machine learning methodologies to analyse antibiotic and biocide susceptibility in Staphylococcus aureus . PLoS ONE 8:e55582 [View Article][PubMed]
    [Google Scholar]
  9. Costerton J. W., Stewart P. S., Greenberg E. P. 1999; Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322 [View Article][PubMed]
    [Google Scholar]
  10. D’Arrigo M., Ginestra G., Mandalari G., Furneri P. M., Bisignano G. 2010; Synergism and postantibiotic effect of tobramycin and Melaleuca alternifolia (tea tree) oil against Staphylococcus aureus and Escherichia coli . Phytomedicine 17:317–322 [View Article][PubMed]
    [Google Scholar]
  11. Fraga B. M., Mestres T., Díaz C. E., Arteaga J. M. 1994; Dehydroabietane diterpenes from Nepeta teydea . Phytochemistry 35:1509–1512 [View Article]
    [Google Scholar]
  12. González M. A., Pérez-Guaita D., Correa-Royero J., Zapata B., Agudelo L., Mesa-Arango A., Betancur-Galvis L. 2010; Synthesis and biological evaluation of dehydroabietic acid derivatives. Eur J Med Chem 45:811–816 [View Article][PubMed]
    [Google Scholar]
  13. Karonen M., Hämäläinen M., Nieminen R., Klika K. D., Loponen J., Ovcharenko V. V., Moilanen E., Pihlaja K. 2004; Phenolic extractives from the bark of Pinus sylvestris L. and their effects on inflammatory mediators nitric oxide and prostaglandin E2 . J Agric Food Chem 52:7532–7540 [View Article][PubMed]
    [Google Scholar]
  14. Kloos W. E., Musselwhite M. S. 1975; Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. Appl Microbiol 30:381–385[PubMed]
    [Google Scholar]
  15. Kwak C. S., Moon S. C., Lee M. S. 2006; Antioxidant, antimutagenic, and antitumor effects of pine needles (Pinus densiflora). Nutr Cancer 56:162–171 [View Article][PubMed]
    [Google Scholar]
  16. Lawless J. 1992 The Encyclopedia of Essential Oils p. 97 Shaftesbury, UK: Element Books (HAS Library);
    [Google Scholar]
  17. Li K., Li Q., Li J., Zhang T., Han Z., Gao D., Zheng F. 2007; Antitumor activity of the procyanidins from Pinus koraiensis bark on mice bearing U14 cervical cancer. Yakugaku Zasshi 127:1145–1151 [View Article][PubMed]
    [Google Scholar]
  18. Marriott P. J., Shellie R., Cornwell C. 2001; Gas chromatographic technologies for the analysis of essential oils. J Chromatogr A 936:1–22 [View Article][PubMed]
    [Google Scholar]
  19. Mun S. H., Joung D. K., Kim Y. S., Kang O. H., Kim S. B., Seo Y. S., Kim Y. C., Lee D. S., Shin D. W. other authors 2013; Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus . Phytomedicine 20:714–718 [View Article][PubMed]
    [Google Scholar]
  20. Navarre W. W., Schneewind O. 1999; Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:174–229[PubMed]
    [Google Scholar]
  21. Nikokar I., Tishayar A., Flakiyan Z., Alijani K., Rehana-Banisaeed S., Hossinpour M., Amir-Alvaei S., Araghian A. 2013; Antibiotic resistance and frequency of class 1 integrons among Pseudomonas aeruginosa, isolated from burn patients in Guilan, Iran. Iran J Microbiol 5:36–41[PubMed]
    [Google Scholar]
  22. NNIS 2004; National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control 32:470–485 [View Article][PubMed]
    [Google Scholar]
  23. Otto M. 2009; Staphylococcus epidermidis – the ‘accidental’ pathogen. Nat Rev Microbiol 7:555–567 [View Article][PubMed]
    [Google Scholar]
  24. Pacheco R., Silva R. R., Morini M. S., Brandão C. R. A. 2009; A comparison of the leaf-litter ant fauna in a secondary atlantic forest with an adjacent pine plantation in southeastern Brazil. Neotrop Entomol 38:55–65 [View Article][PubMed]
    [Google Scholar]
  25. Politeo O., Skocibusic M., Maravic A., Ruscic M., Milos M. 2011; Chemical composition and antimicrobial activity of the essential oil of endemic Dalmatian black pine (Pinus nigra ssp. dalmatica). Chem Biodivers 8:540–547 [View Article][PubMed]
    [Google Scholar]
  26. Porto T. S., Rangel R., Furtado N. A., de Carvalho T. C., Martins C. H., Veneziani R. C., Da Costa F. B., Vinholis A. H., Cunha W. R. other authors 2009; Pimarane-type diterpenes: antimicrobial activity against oral pathogens. Molecules 14:191–199 [View Article][PubMed]
    [Google Scholar]
  27. Porto T. S., Simão M. R., Carlos L. Z., Martins C. H., Furtado N. A., Said S., Arakawa N. S., dos Santos R. A., Veneziani R. C., Ambrósio S. R. 2013; Pimarane-type diterpenes obtained by biotransformation: antimicrobial properties against clinically isolated Gram-positive multidrug-resistant bacteria. Phytother Res 27:1502–1507[PubMed]
    [Google Scholar]
  28. Ríos J. L., Recio M. C. 2005; Medicinal plants and antimicrobial activity. J Ethnopharmacol 100:80–84 [View Article][PubMed]
    [Google Scholar]
  29. Russell A. D. 2002; Antibiotic and biocide resistance in bacteria: introduction. Symp Ser Soc Appl Microbiol 92:s11S–3S [View Article][PubMed]
    [Google Scholar]
  30. Sarker S. D., Nahar L., Kumarasamy Y. 2007; Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42:321–324 [View Article][PubMed]
    [Google Scholar]
  31. Sticher O. 1977 New Natural Products and Plant Drugs with Pharmacological, Biological, or Therapeutic Activity p. 137 Edited by Wagner H., Wolff P. Berlin: Springer-Verlag; [View Article]
    [Google Scholar]
  32. Tóro R. M., Gessner A. A., Furtado N. A., Ceccarelli P. S., de Albuquerque S., Bastos J. K. 2003; Activity of the Pinus elliottii resin compounds against Lernaea cyprinacea in vitro . Vet Parasitol 118:143–149 [View Article][PubMed]
    [Google Scholar]
  33. Uçkay I., Pittet D., Vaudaux P., Sax H., Lew D., Waldvogel F. 2009; Foreign body infections due to Staphylococcus epidermidis . Ann Med 41:109–119 [View Article][PubMed]
    [Google Scholar]
  34. Widerström M., Wiström J., Sjöstedt A., Monsen T. 2012; Coagulase-negative staphylococci: update on the molecular epidemiology and clinical presentation, with a focus on Staphylococcus epidermidis and Staphylococcus saprophyticus . Eur J Clin Microbiol Infect Dis 31:7–20 [View Article][PubMed]
    [Google Scholar]
  35. Zeng W. C., Zhang Z., Gao H., Jia L. R., He Q. 2012; Chemical composition, antioxidant, and antimicrobial activities of essential oil from pine needle (Cedrus deodara). J Food Sci 77:C824–C829 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.081711-0
Loading
/content/journal/jmm/10.1099/jmm.0.081711-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error