1887

Abstract

Group A streptococcus (GAS) is responsible for a wide range of diseases ranging from superficial infections, such as pharyngitis and impetigo, to life-threatening diseases, such as toxic shock syndrome and acute rheumatic fever (ARF). GAS pili are hair-like extensions protruding from the cell surface and consist of highly immunogenic structural proteins: the backbone pilin (BP) and one or two accessory pilins (AP1 and AP2). The protease-resistant BP builds the pilus shaft and has been recognized as the T-antigen, which forms the basis of a major serological typing scheme that is often used as a supplement to M typing. A previous sequence analysis of the gene ( gene) in 39 GAS isolates revealed 15 different types. In this study, we sequenced the gene from 100 GAS isolates obtained from patients with pharyngitis, ARF or invasive disease in New Zealand. We found 20 new alleles and four new types/subtypes. No association between type and clinical outcome was observed. We confirmed earlier reports that the type and type are associated strongly, but we also found exceptions, where multiple types could be found in certain M type strains, such as M/89. We also reported, for the first time, the existence of a chimeric allele, which was assigned into a new subclade (3.1). A strong sequence conservation of the gene was observed within the individual types/subtypes (>97 % sequence identity), as well as between historical and contemporary New Zealand and international GAS strains. This temporal and geographical sequence stability provided further evidence for the potential use of the BP/T-antigen as a vaccine target.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.080804-0
2014-12-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/12/1670.html?itemId=/content/journal/jmm/10.1099/jmm.0.080804-0&mimeType=html&fmt=ahah

References

  1. Abbot E. L., Smith W. D., Siou G. P. S., Chiriboga C., Smith R. J., Wilson J. A., Hirst B. H., Kehoe M. A.. ( 2007;). Pili mediate specific adhesion of Streptococcus pyogenes to human tonsil and skin. . Cell Microbiol 9:, 1822–1833. [CrossRef][PubMed]
    [Google Scholar]
  2. Beall B., Facklam R., Thompson T.. ( 1996;). Sequencing emm-specific PCR products for routine and accurate typing of group A streptococci. . J Clin Microbiol 34:, 953–958.[PubMed]
    [Google Scholar]
  3. Bessen D. E., Lizano S.. ( 2010;). Tissue tropisms in group A streptococcal infections. . Future Microbiol 5:, 623–638. [CrossRef][PubMed]
    [Google Scholar]
  4. Dale J. B., Penfound T. A., Tamboura B., Sow S. O., Nataro J. P., Tapia M., Kotloff K. L.. ( 2013;). Potential coverage of a multivalent M protein-based group A streptococcal vaccine. . Vaccine 31:, 1576–1581. [CrossRef][PubMed]
    [Google Scholar]
  5. Falugi F., Zingaretti C., Pinto V., Mariani M., Amodeo L., Manetti A. G. O., Capo S., Musser J. M., Orefici G.. & other authors ( 2008;). Sequence variation in group A Streptococcus pili and association of pilus backbone types with Lancefield T serotypes. . J Infect Dis 198:, 1834–1841. [CrossRef][PubMed]
    [Google Scholar]
  6. Fischetti V. A.. ( 1989;). Streptococcal M protein: molecular design and biological behavior. . Clin Microbiol Rev 2:, 285–314.[PubMed]
    [Google Scholar]
  7. Kang H. J., Coulibaly F., Clow F., Proft T., Baker E. N.. ( 2007;). Stabilizing isopeptide bonds revealed in Gram-positive bacterial pilus structure. . Science 318:, 1625–1628. [CrossRef][PubMed]
    [Google Scholar]
  8. Köller T., Manetti A. G. O., Kreikemeyer B., Lembke C., Margarit I., Grandi G., Podbielski A.. ( 2010;). Typing of the pilus-protein-encoding FCT region and biofilm formation as novel parameters in epidemiological investigations of Streptococcus pyogenes isolates from various infection sites. . J Med Microbiol 59:, 442–452. [CrossRef][PubMed]
    [Google Scholar]
  9. Kratovac Z., Manoharan A., Luo F., Lizano S., Bessen D. E.. ( 2007;). Population genetics and linkage analysis of loci within the FCT region of Streptococcus pyogenes. . J Bacteriol 189:, 1299–1310. [CrossRef][PubMed]
    [Google Scholar]
  10. Kreikemeyer B., Gámez G., Margarit I., Giard J.-C., Hammerschmidt S., Hartke A., Podbielski A.. ( 2011;). Genomic organization, structure, regulation and pathogenic role of pilus constituents in major pathogenic Streptococci and Enterococci. . Int J Med Microbiol 301:, 240–251. [CrossRef][PubMed]
    [Google Scholar]
  11. Lizano S., Luo F., Bessen D. E.. ( 2007;). Role of streptococcal T antigens in superficial skin infection. . J Bacteriol 189:, 1426–1434. [CrossRef][PubMed]
    [Google Scholar]
  12. Mora M., Bensi G., Capo S., Falugi F., Zingaretti C., Manetti A. G. O., Maggi T., Taddei A. R., Grandi G., Telford J. L.. ( 2005;). Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens. . Proc Natl Acad Sci U S A 102:, 15641–15646. [CrossRef][PubMed]
    [Google Scholar]
  13. Moreland N. J., Waddington C. S., Williamson D. A., Sriskandan S., Smeesters P. R., Proft T., Steer A. C., Walker M. J., Baker E. N.. & other authors ( 2014;). Working towards a group A streptococcal vaccine: report of a collaborative Trans-Tasman workshop. . Vaccine 32:, 3713–3720. [CrossRef][PubMed]
    [Google Scholar]
  14. Petersen T. N., Brunak S., von Heijne G., Nielsen H.. ( 2011;). SignalP 4.0: discriminating signal peptides from transmembrane regions. . Nat Methods 8:, 785–786. [CrossRef][PubMed]
    [Google Scholar]
  15. Safar A., Lennon D., Stewart J., Trenholme A., Drinkovic D., Peat B., Taylor S., Read K., Roberts S., Voss L.. ( 2011;). Invasive group A streptococcal infection and vaccine implications, Auckland, New Zealand. . Emerg Infect Dis 17:, 983–989. [CrossRef][PubMed]
    [Google Scholar]
  16. Sanderson-Smith M., De Oliveira D. M., Guglielmini J., McMillan D. J., Vu T., Holien J. K., Henningham A., Steer A. C., Bessen D. E.. & other authors ( 2014;). A systematic and functional classification of Streptococcus pyogenes that serves as a new tool for molecular typing and vaccine development. . J Infect Dis 210:, 1325–1338. [CrossRef][PubMed]
    [Google Scholar]
  17. Spraggon G., Koesema E., Scarselli M., Malito E., Biagini M., Norais N., Emolo C., Barocchi M. A., Giusti F.. & other authors ( 2010;). Supramolecular organization of the repetitive backbone unit of the Streptococcus pneumoniae pilus. . PLoS ONE 5:, e10919. [CrossRef][PubMed]
    [Google Scholar]
  18. Steer A. C., Law I., Matatolu L., Beall B. W., Carapetis J. R.. ( 2009;). Global emm type distribution of group A streptococci: systematic review and implications for vaccine development. . Lancet Infect Dis 9:, 611–616. [CrossRef][PubMed]
    [Google Scholar]
  19. Walker M. J., Barnett T. C., McArthur J. D., Cole J. N., Gillen C. M., Henningham A., Sriprakash K. S., Sanderson-Smith M. L., Nizet V.. ( 2014;). Disease manifestations and pathogenic mechanisms of group A Streptococcus. . Clin Microbiol Rev 27:, 264–301. [CrossRef][PubMed]
    [Google Scholar]
  20. Williamson D. A., Moreland N. J., Carter P., Upton A., Morgan J., Proft T., Lennon D., Baker M. G., Dunbar R., Fraser J. D.. ( 2014;). Molecular epidemiology of group A streptococcus from pharyngeal isolates in Auckland, New Zealand, 2013. . N Z Med J 127:, 55–60.[PubMed]
    [Google Scholar]
  21. Young P. G., Moreland N. J., Loh J. M., Bell A., Atatoa Carr P., Proft T., Baker E. N.. ( 2014;). Structural conservation, variability and immunogenicity of the T6 backbone pilin of serotype M6 Streptococcus pyogenes. . Infect Immun 82:, 2949–2957. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.080804-0
Loading
/content/journal/jmm/10.1099/jmm.0.080804-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error