1887

Abstract

, as an opportunistic pathogen, can cause superficial and life-threatening candidiasis in immunocompromised individuals. The formation of surface-associated biofilms and the appearance of drug resistance pose a significant challenge for clinical intervention. In this study, a total of 104 hospital-acquired clinical isolates were collected from sterile sites and mucosal lesions of 92 infectious disease patients in the Shanghai Public Health Clinical Center and analysed. The resistance rates to fluconazole, itraconazole and voriconazole were 12.5 %, 15.4 % and 11.5 % respectively. Multilocus sequence typing (MLST) analysis identified 63 diploid sequence types (DSTs) with a decentralized phylogeny, of which 37 DSTs (58.7 %) had not been reported in the online MLST database. Loss of heterozygosity was observed in and sequences obtained from six sequential isolates from a patient receiving antifungal treatment, which exemplified the effect of microevolution on genetic alterations. Biofilm formation capability, an important virulence trait of , was variable among strains isolated from different anatomical sites ( = 0.0302) and affected by genotypes ( = 0.0185). The mRNA levels of the azole antifungal target gene and efflux pump genes (, and ) were detected in 9–18.1 % of azole-resistant and susceptible-dose dependent (S-DD) isolates. Twelve mutations encoding distinct amino acid substitutions in were found in azole-resistant and S-DD isolates. Among them, A114S, Y132H and Y257H substitution in the gene may be primarily related to azole resistance. Taken together, we observed a high level of diversity within isolates. Multiple inter-related underlying mechanisms, including genetic and environmental factors, may account for high surface adhesion or azole resistance in clinical infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.080200-0
2015-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/1/74.html?itemId=/content/journal/jmm/10.1099/jmm.0.080200-0&mimeType=html&fmt=ahah

References

  1. Bougnoux M. E., Tavanti A., Bouchier C., Gow N. A., Magnier A., Davidson A. D., Maiden M. C., D’Enfert C., Odds F. C. 2003; Collaborative consensus for optimized multilocus sequence typing of Candida albicans . J Clin Microbiol 41:5265–5266 [View Article][PubMed]
    [Google Scholar]
  2. Bougnoux M. E., Diogo D., François N., Sendid B., Veirmeire S., Colombel J. F., Bouchier C., Van Kruiningen H., d’Enfert C., Poulain D. 2006; Multilocus sequence typing reveals intrafamilial transmission and microevolutions of Candida albicans isolates from the human digestive tract. J Clin Microbiol 44:1810–1820 [View Article][PubMed]
    [Google Scholar]
  3. Chau A. S., Mendrick C. A., Sabatelli F. J., Loebenberg D., McNicholas P. M. 2004; Application of real-time quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to azoles. Antimicrob Agents Chemother 48:2124–2131 [View Article][PubMed]
    [Google Scholar]
  4. CLSI 2002; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard M27-A2, 2nd edn. Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  5. d’Enfert C. 2006; Biofilms and their role in the resistance of pathogenic Candida to antifungal agents. Curr Drug Targets 7:465–670 [View Article][PubMed]
    [Google Scholar]
  6. Fothergill A. W., Sutton D. A., McCarthy D. I., Wiederhold N. P. 2014; Impact of new antifungal breakpoints on antifungal resistance in Candida species. J Clin Microbiol 52:994–997 [View Article][PubMed]
    [Google Scholar]
  7. Ge S. H., Xie J., Xu J., Li J., Li D. M., Zong L. L., Zheng Y. C., Bai F. Y. 2012; Prevalence of specific and phylogenetically closely related genotypes in the population of Candida albicans associated with genital candidiasis in China. Fungal Genet Biol 49:86–93 [View Article][PubMed]
    [Google Scholar]
  8. Gong Y. B., Zheng J. L., Jin B., Zhuo D. X., Huang Z. Q., Qi H., Zhang W., Duan W., Fu J. T. other authors 2012; Particular Candida albicans strains in the digestive tract of dyspeptic patients, identified by multilocus sequence typing. PLoS ONE 7:e35311 [View Article][PubMed]
    [Google Scholar]
  9. Guo F., Yang Y., Kang Y., Zang B., Cui W., Qin B., Qin Y., Fang Q., Qin T. other authors 2013; Invasive candidiasis in intensive care units in China: a multicentre prospective observational study. J Antimicrob Chemother 68:1660–1668 [View Article][PubMed]
    [Google Scholar]
  10. Johnson D. W., Cobb J. P. 2010; Candida infection and colonization in critically ill surgical patients. Virulence 1:355–356 [View Article][PubMed]
    [Google Scholar]
  11. Kelly S. L., Lamb D. C., Kelly D. E. 1999; Y132H substitution in Candida albicans sterol 14alpha-demethylase confers fluconazole resistance by preventing binding to haem. FEMS Microbiol Lett 180:171–175[PubMed]
    [Google Scholar]
  12. Kim J., Sudbery P. 2011; Candida albicans, a major human fungal pathogen. J Microbiol 49:171–177 [View Article][PubMed]
    [Google Scholar]
  13. Kontoyiannis D. P., Lewis R. E. 2002; Antifungal drug resistance of pathogenic fungi. Lancet 359:1135–1144 [View Article][PubMed]
    [Google Scholar]
  14. Liu Y., Filler S. G. 2011; Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot Cell 10:168–173 [View Article][PubMed]
    [Google Scholar]
  15. Löffler J., Kelly S. L., Hebart H., Schumacher U., Lass-Flörl C., Einsele H. 1997; Molecular analysis of cyp51 from fluconazole-resistant Candida albicans strains. FEMS Microbiol Lett 151:263–268 [View Article][PubMed]
    [Google Scholar]
  16. Maebashi K., Kudoh M., Nishiyama Y., Makimura K., Kamai Y., Uchida K., Yamaguchi H. 2003; Proliferation of intracellular structure corresponding to reduced affinity of fluconazole for cytochrome P-450 in two low-susceptibility strains of Candida albicans isolated from a Japanese AIDS patient. Microbiol Immunol 47:117–124 [View Article][PubMed]
    [Google Scholar]
  17. Marco F., Lockhart S. R., Pfaller M. A., Pujol C., Rangel-Frausto M. S., Wiblin T., Blumberg H. M., Edwards J. E., Jarvis W. other authors 1999; Elucidating the origins of nosocomial infections with Candida albicans by DNA fingerprinting with the complex probe Ca3. J Clin Microbiol 37:2817–2828[PubMed]
    [Google Scholar]
  18. Marichal P., Koymans L., Willemsens S., Bellens D., Verhasselt P., Luyten W., Borgers M., Ramaekers F. C., Odds F. C., Bossche H. V. 1999; Contribution of mutations in the cytochrome P450 14alpha-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans. . Microbiology 145:2701–2713[PubMed]
    [Google Scholar]
  19. Martel C. M., Parker J. E., Bader O., Weig M., Gross U., Warrilow A. G., Kelly D. E., Kelly S. L. 2010a; A clinical isolate of Candida albicans with mutations in ERG11 (encoding sterol 14alpha-demethylase) and ERG5 (encoding C22 desaturase) is cross resistant to azoles and amphotericin B. Antimicrob Agents Chemother 54:3578–3583 [View Article][PubMed]
    [Google Scholar]
  20. Martel C. M., Parker J. E., Bader O., Weig M., Gross U., Warrilow A. G., Rolley N., Kelly D. E., Kelly S. L. 2010b; Identification and characterization of four azole-resistant erg3 mutants of Candida albicans . Antimicrob Agents Chemother 54:4527–4533 [View Article][PubMed]
    [Google Scholar]
  21. Mathé L., Van Dijck P. 2013; Recent insights into Candida albicans biofilm resistance mechanisms. Curr Genet 59:251–264 [View Article][PubMed]
    [Google Scholar]
  22. McManus B. A., Coleman D. C. 2014; Molecular epidemiology, phylogeny and evolution of Candida albicans . Infect Genet Evol 21:166–178 [View Article][PubMed]
    [Google Scholar]
  23. Morio F., Loge C., Besse B., Hennequin C., Le Pape P. 2010; Screening for amino acid substitutions in the Candida albicans Erg11 protein of azole-susceptible and azole-resistant clinical isolates: new substitutions and a review of the literature. Diagn Microbiol Infect Dis 66:373–384 [View Article][PubMed]
    [Google Scholar]
  24. Nailis H., Kucharíková S., Ricicová M., Van Dijck P., Deforce D., Nelis H., Coenye T. 2010; Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression. BMC Microbiol 10:114–124 [View Article][PubMed]
    [Google Scholar]
  25. Nett J. E., Lepak A. J., Marchillo K., Andes D. R. 2009; Time course global gene expression analysis of an in vivo Candida biofilm. J Infect Dis 200:307–313 [View Article][PubMed]
    [Google Scholar]
  26. Nobile C. J., Nett J. E., Andes D. R., Mitchell A. P. 2006; Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot Cell 5:1604–1610 [View Article][PubMed]
    [Google Scholar]
  27. Nobile C. J., Schneider H. A., Nett J. E., Sheppard D. C., Filler S. G., Andes D. R., Mitchell A. P. 2008; Complementary adhesin function in C. albicans biofilm formation. Curr Biol 18:1017–1024 [View Article][PubMed]
    [Google Scholar]
  28. Odds F. C., Davidson A. D., Jacobsen M. D., Tavanti A., Whyte J. A., Kibbler C. C., Ellis D. H., Maiden M. C., Shaw D. J., Gow N. A. 2006; Candida albicans strain maintenance, replacement, and microvariation demonstrated by multilocus sequence typing. J Clin Microbiol 44:3647–3658 [View Article][PubMed]
    [Google Scholar]
  29. Odds F. C., Bougnoux M. E., Shaw D. J., Bain J. M., Davidson A. D., Diogo D., Jacobsen M. D., Lecomte M., Li S. Y. other authors 2007; Molecular phylogenetics of Candida albicans. . Eukaryot Cell 6:1041–1052 [View Article][PubMed]
    [Google Scholar]
  30. Park H. G., Lee I. S., Chun Y. J., Yun C. H., Johnston J. B., Montellano P. R., Kim D. 2011; Heterologous expression and characterization of the sterol 14α-demethylase CYP51F1 from Candida albicans. Arch Biochem Biophys 509:9–15 [View Article][PubMed]
    [Google Scholar]
  31. Perea S. 2000; [Azole resistance in Candida albicans.]. Rev Esp Quimioter 13:314–317 (in Spanish) [PubMed]
    [Google Scholar]
  32. Perea S., López-Ribot J. L., Kirkpatrick W. R., McAtee R. K., Santillán R. A., Martínez M., Calabrese D., Sanglard D., Patterson T. F. 2001; Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 45:2676–2684 [View Article][PubMed]
    [Google Scholar]
  33. Pierce C. G., Thomas D. P., López-Ribot J. L. 2009; Effect of tunicamycin on Candida albicans biofilm formation and maintenance. J Antimicrob Chemother 63:473–479 [View Article][PubMed]
    [Google Scholar]
  34. Prasad R., De Wergifosse P., Goffeau A., Balzi E. 1995; Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet 27:320–329 [View Article][PubMed]
    [Google Scholar]
  35. Ramage G., Vande Walle K., Wickes B. L., López-Ribot J. L. 2001; Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother 45:2475–2479 [View Article][PubMed]
    [Google Scholar]
  36. Sanglard D., Odds F. C. 2002; Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2:73–85 [View Article][PubMed]
    [Google Scholar]
  37. Sanglard D., Kuchler K., Ischer F., Pagani J. L., Monod M., Bille J. 1995; Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother 39:2378–2386 [View Article][PubMed]
    [Google Scholar]
  38. Sanglard D., Ischer F., Monod M., Bille J. 1996; Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob Agents Chemother 40:2300–2305[PubMed]
    [Google Scholar]
  39. Sanglard D., Ischer F., Monod M., Bille J. 1997; Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology 143:405–416 [View Article][PubMed]
    [Google Scholar]
  40. Sanglard D., Ischer F., Koymans L., Bille J. 1998; Amino acid substitutions in the cytochrome P-450 lanosterol 14alpha-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrob Agents Chemother 42:241–253[PubMed] [CrossRef]
    [Google Scholar]
  41. Sanguinetti M., Posteraro B., Fiori B., Ranno S., Torelli R., Fadda G. 2005; Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob Agents Chemother 49:668–679 [CrossRef]
    [Google Scholar]
  42. Seneviratne C. J., Jin L. J., Samaranayake Y. H., Samaranayake L. P. 2008; Cell density and cell aging as factors modulating antifungal resistance of Candida albicans biofilms. Antimicrob Agents Chemother 52:3259–3266 [View Article][PubMed]
    [Google Scholar]
  43. Shin J. H., Park M. R., Song J. W., Shin D. H., Jung S. I., Cho D., Kee S. J., Shin M. G., Suh S. P., Ryang D. W. 2004; Microevolution of Candida albicans strains during catheter-related candidemia. J Clin Microbiol 42:4025–4031 [View Article][PubMed]
    [Google Scholar]
  44. Shin J. H., Bougnoux M. E., d’Enfert C., Kim S. H., Moon C. J., Joo M. Y., Lee K., Kim M. N., Lee H. S. other authors 2011; Genetic diversity among Korean Candida albicans bloodstream isolates: assessment by multilocus sequence typing and restriction endonuclease analysis of genomic DNA by use of BssHII. J Clin Microbiol 49:2572–2577 [View Article][PubMed]
    [Google Scholar]
  45. Staab J. F., Bradway S. D., Fidel P. L., Sundstrom P. 1999; Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. . Science 283:1535–1538 [View Article][PubMed]
    [Google Scholar]
  46. White T. C. 1997a; The presence of an R467K amino acid substitution and loss of allelic variation correlate with an azole-resistant lanosterol 14alpha demethylase in Candida albicans . Antimicrob Agents Chemother 41:1488–1494[PubMed]
    [Google Scholar]
  47. White T. C. 1997b; Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother 41:1482–1487[PubMed]
    [Google Scholar]
  48. White T. C., Marr K. A., Bowden R. A. 1998; Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11:382–402[PubMed]
    [Google Scholar]
  49. White T. C., Holleman S., Dy F., Mirels L. F., Stevens D. A. 2002; Resistance mechanisms in clinical isolates of Candida albicans. . Antimicrob Agents Chemother 46:1704–1713 [View Article][PubMed]
    [Google Scholar]
  50. Wisplinghoff H., Bischoff T., Tallent S. M., Seifert H., Wenzel R. P., Edmond M. B. 2004; Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317 [View Article][PubMed]
    [Google Scholar]
  51. Xiang M. J., Liu J. Y., Ni P. H., Wang S., Shi C., Wei B., Ni Y. X., Ge H. L. 2013; Erg11 mutations associated with azole resistance in clinical isolates of Candida albicans. . FEMS Yeast Res 13:386–393 [View Article][PubMed]
    [Google Scholar]
  52. Ying Y., Zhao Y., Hu X., Cai Z., Liu X., Jin G., Zhang J., Zhang J., Liu J., Huang X. 2013; In vitro fluconazole susceptibility of 1,903 clinical isolates of Candida albicans and the identification of ERG11 mutations. Microb Drug Resist 19:266–273 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.080200-0
Loading
/content/journal/jmm/10.1099/jmm.0.080200-0
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error