1887

Abstract

is a spore-forming micro-organism responsible for foodborne illness. In this study, we focus on the host response following intragastric challenge with a pathogenic strain (B10502) isolated from a foodborne outbreak. C57BL/6J female mice were infected by gavage with strain B10502. Controls were administered with PBS. Infection leads to significant modification in relevant immune cells in the spleen, Peyer's patches (PP) and mesenteric lymph nodes (MLN). These findings correlated with an increase in the size of PP as compared with uninfected controls. Histological studies showed that infection increased the ratio of intestinal goblet cells and induces mononuclear cell infiltrates in spleen at 5 days post-infection. Evaluation of cytokine mRNA expression demonstrated a significant increase in IFN-γ in MLN after 2 days of infection. The present work demonstrates that infection of mice with vegetative is self-limited. Our findings determined relevant cell populations that were involved in the control of the pathogen through modification of the ratio and/or activation.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.079939-0
2014-12-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/12/1741.html?itemId=/content/journal/jmm/10.1099/jmm.0.079939-0&mimeType=html&fmt=ahah

References

  1. Agata N., Ohta M., Arakawa Y., Mori M.. ( 1995;). The bceT gene of Bacillus cereus encodes an enterotoxic protein. . Microbiology 141:, 983–988. [CrossRef][PubMed]
    [Google Scholar]
  2. Akiyama N., Mitani K., Tanaka Y., Hanazono Y., Motoi N., Zarkovic M., Tange T., Hirai H., Yazaki Y.. ( 1997;). Fulminant septicemic syndrome of Bacillus cereus in a leukemic patient. . Intern Med 36:, 221–226. [CrossRef][PubMed]
    [Google Scholar]
  3. Anderle P., Sengstag T., Mutch D. M., Rumbo M., Praz V., Mansourian R., Delorenzi M., Williamson G., Roberts M. A.. ( 2005;). Changes in the transcriptional profile of transporters in the intestine along the anterior-posterior and crypt-villus axes. . BMC Genomics 6:, 69. [CrossRef][PubMed]
    [Google Scholar]
  4. Andersson A., Granum P. E., Rönner U.. ( 1998;). The adhesion of Bacillus cereus spores to epithelial cells might be an additional virulence mechanism. . Int J Food Microbiol 39:, 93–99. [CrossRef][PubMed]
    [Google Scholar]
  5. Asano S. I., Nukumizu Y., Bando H., Iizuka T., Yamamoto T.. ( 1997;). Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis. . Appl Environ Microbiol 63:, 1054–1057.[PubMed]
    [Google Scholar]
  6. Bahjat K. S., Liu W., Lemmens E. E., Schoenberger S. P., Portnoy D. A., Dubensky T. W. Jr, Brockstedt D. G.. ( 2006;). Cytosolic entry controls CD8+-T-cell potency during bacterial infection. . Infect Immun 74:, 6387–6397. [CrossRef][PubMed]
    [Google Scholar]
  7. Barraud O., Hidri N., Ly K., Pichon N., Manea P., Ploy M. C., Garnier F.. ( 2012;). Pacemaker-associated Bacillus cereus endocarditis. . Diagn Microbiol Infect Dis 74:, 313–315. [CrossRef][PubMed]
    [Google Scholar]
  8. Beecher D. J., Wong A. C. L.. ( 1994;). Identification of hemolysin BL-producing Bacillus cereus isolates by a discontinuous hemolytic pattern in blood agar. . Appl Environ Microbiol 60:, 1646–1651.[PubMed]
    [Google Scholar]
  9. Beecher D. J., Wong A. C. L.. ( 2000;). Cooperative, synergistic and antagonistic haemolytic interactions between haemolysin BL, phosphatidylcholine phospholipase C and sphingomyelinase from Bacillus cereus. . Microbiology 146:, 3033–3039.[PubMed]
    [Google Scholar]
  10. Bottone E. J.. ( 2010;). Bacillus cereus, a volatile human pathogen. . Clin Microbiol Rev 23:, 382–398. [CrossRef][PubMed]
    [Google Scholar]
  11. Ceuppens S., Uyttendaele M., Hamelink S., Boon N., Van de Wiele T.. ( 2012;). Inactivation of Bacillus cereus vegetative cells by gastric acid and bile during in vitro gastrointestinal transit. . Gut Pathog 4:, 11. [CrossRef][PubMed]
    [Google Scholar]
  12. Clavel T., Carlin F., Lairon D., Nguyen-The C., Schmitt P.. ( 2004;). Survival of Bacillus cereus spores and vegetative cells in acid media simulating human stomach. . J Appl Microbiol 97:, 214–219. [CrossRef][PubMed]
    [Google Scholar]
  13. Dancer S. J., McNair D., Finn P., Kolsto A. B.. ( 2002;). Bacillus cereus cellulitis from contaminated heroin. . J Med Microbiol 51:, 278–281.[PubMed]
    [Google Scholar]
  14. Dierick K., Van Coillie E., Swiecicka I., Meyfroidt G., Devlieger H., Meulemans A., Hoedemaekers G., Fourie L., Heyndrickx M., Mahillon J.. ( 2005;). Fatal family outbreak of Bacillus cereus-associated food poisoning. . J Clin Microbiol 43:, 4277–4279. [CrossRef][PubMed]
    [Google Scholar]
  15. Durand M. L.. ( 2013;). Endophthalmitis. . Clin Microbiol Infect 19:, 227–234. [CrossRef][PubMed]
    [Google Scholar]
  16. Ehling-Schulz M., Svensson B., Guinebretière M.-H., Lindbäck T., Andersson M., Schulz A., Fricker M., Christiansson A., Granum P. E.. & other authors ( 2005;). Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. . Microbiology 151:, 183–197. [CrossRef][PubMed]
    [Google Scholar]
  17. Glomski I. J., Piris-Gimenez A., Huerre M., Mock M., Goossens P. L.. ( 2007;). Primary involvement of pharynx and Peyer’s patch in inhalational and intestinal anthrax. . PLoS Pathog 3:, e76. [CrossRef][PubMed]
    [Google Scholar]
  18. Gohar M., Økstad O. A., Gilois N., Sanchis V., Kolstø A. B., Lereclus D.. ( 2002;). Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. . Proteomics 2:, 784–791. [CrossRef][PubMed]
    [Google Scholar]
  19. Guinebretière M. H., Thompson F. L., Sorokin A., Normand P., Dawyndt P., Ehling-Schulz M., Svensson B., Sanchis V., Nguyen-The C.. & other authors ( 2008;). Ecological diversification in the Bacillus cereus group. . Environ Microbiol 10:, 851–865. [CrossRef][PubMed]
    [Google Scholar]
  20. Henderson B., Wilson M., McNab R., Lax A.. ( 1999;). Bacterial protein toxins: agents of disease and probes of eukaryotic cell behaviour. . In Cellular Microbiology: Bacteria–Host Interactions in Health and Disease, pp. 273–310. Chichester:: Wiley;.
    [Google Scholar]
  21. Heninger S., Drysdale M., Lovchik J., Hutt J., Lipscomb M. F., Koehler T. M., Lyons C. R.. ( 2006;). Toxin-deficient mutants of Bacillus anthracis are lethal in a murine model for pulmonary anthrax. . Infect Immun 74:, 6067–6074. [CrossRef][PubMed]
    [Google Scholar]
  22. Horwood P. F., Burgess G. W., Oakey H. J.. ( 2004;). Evidence for non-ribosomal peptide synthetase production of cereulide (the emetic toxin) in Bacillus cereus. . FEMS Microbiol Lett 236:, 319–324. [CrossRef][PubMed]
    [Google Scholar]
  23. Huttunen K., Hyvärinen A., Nevalainen A., Komulainen H., Hirvonen M. R.. ( 2003;). Production of proinflammatory mediators by indoor air bacteria and fungal spores in mouse and human cell lines. . Environ Health Perspect 111:, 85–92. [CrossRef][PubMed]
    [Google Scholar]
  24. Kim Y. S., Ho S. B.. ( 2010;). Intestinal goblet cells and mucins in health and disease: recent insights and progress. . Curr Gastroenterol Rep 12:, 319–330. [CrossRef][PubMed]
    [Google Scholar]
  25. Kotiranta A., Haapasalo M., Kari K., Kerosuo E., Olsen I., Sorsa T., Meurman J. H., Lounatmaa K.. ( 1998;). Surface structure, hydrophobicity, phagocytosis, and adherence to matrix proteins of Bacillus cereus cells with and without the crystalline surface protein layer. . Infect Immun 66:, 4895–4902.[PubMed]
    [Google Scholar]
  26. Kotiranta A., Lounatmaa K., Haapasalo M.. ( 2000;). Epidemiology and pathogenesis of Bacillus cereus infections. . Microbes Infect 2:, 189–198. [CrossRef][PubMed]
    [Google Scholar]
  27. Lede I., Vlaar A., Roosendaal R., Geerlings S., Spanjaard L.. ( 2011;). Fatal outcome of Bacillus cereus septicaemia. . Neth J Med 69:, 514–516.[PubMed]
    [Google Scholar]
  28. Lund T., Granum P. E.. ( 1997;). Comparison of biological effect of the two different enterotoxin complexes isolated from three different strains of Bacillus cereus. . Microbiology 143:, 3329–3336. [CrossRef][PubMed]
    [Google Scholar]
  29. Mahler H., Pasi A., Kramer J. M., Schulte P., Scoging A. C., Bär W., Krähenbühl S.. ( 1997;). Fulminant liver failure in association with the emetic toxin of Bacillus cereus. . N Engl J Med 336:, 1142–1148. [CrossRef][PubMed]
    [Google Scholar]
  30. Marona H. R. N., Lucchesi M. B. B.. ( 2004;). Protocol to refine intestinal motility test in mice. . Lab Anim 38:, 257–260. [CrossRef][PubMed]
    [Google Scholar]
  31. McLauchlin J., Salmon J. E., Ahmed S., Brazier J. S., Brett M. M., George R. C., Hood J.. ( 2002;). Amplified fragment length polymorphism (AFLP) analysis of Clostridium novyi, C. perfringens and Bacillus cereus isolated from injecting drug users during 2000. . J Med Microbiol 51:, 990–1000.[PubMed]
    [Google Scholar]
  32. Medrano M., Racedo S. M., Rolny I. S., Abraham A. G., Pérez P. F.. ( 2011;). Oral administration of kefiran induces changes in the balance of immune cells in a murine model. . J Agric Food Chem 59:, 5299–5304. [CrossRef][PubMed]
    [Google Scholar]
  33. Minnaard J., Humen M., Pérez- P. F.. ( 2001;). Effect of Bacillus cereus exocellular factors on human intestinal epithelial cells. . J Food Prot 64:, 1535–1541.[PubMed]
    [Google Scholar]
  34. Minnaard J., Lievin-Le Moal V., Coconnier M. H., Servin A. L., Pérez P. F.. ( 2004;). Disassembly of F-actin cytoskeleton after interaction of Bacillus cereus with fully differentiated human intestinal Caco-2 cells. . Infect Immun 72:, 3106–3112. [CrossRef][PubMed]
    [Google Scholar]
  35. Minnaard J., Delfederico L., Vasseur V., Hollmann A., Rolny I., Semorile L., Pérez P. F.. ( 2007;). Virulence of Bacillus cereus: a multivariate analysis. . Int J Food Microbiol 116:, 197–206. [CrossRef][PubMed]
    [Google Scholar]
  36. Miyata J., Tasaka S., Miyazaki M., Yoshida S., Naoki K., Sayama K., Asano K., Fujiwara H., Ohkusu K.. & other authors ( 2013;). Bacillus cereus necrotizing pneumonia in a patient with nephrotic syndrome. . Intern Med 52:, 101–104. [CrossRef][PubMed]
    [Google Scholar]
  37. Moreno G., Errea A., Van Maele L., Roberts R., Léger H., Sirard J. C., Benecke A., Rumbo M., Hozbor D.. ( 2013;). Toll-like receptor 4 orchestrates neutrophil recruitment into airways during the first hours of Bordetella pertussis infection. . Microbes Infect 15:, 708–718. [CrossRef][PubMed]
    [Google Scholar]
  38. Moyer A. L., Ramadan R. T., Thurman J., Burroughs A., Callegan M. C.. ( 2008;). Bacillus cereus induces permeability of an in vitro blood-retina barrier. . Infect Immun 76:, 1358–1367. [CrossRef][PubMed]
    [Google Scholar]
  39. Murphy K., Travers P., Walport M.. ( 2007;). The mucosal immune system. . In Janeway's Immunobiology, , 7th edn.. New York:: Garland Science, Taylor & Francis;.
    [Google Scholar]
  40. Myagmarjalbuu B., Moon M. J., Heo S. H., Jeong S. I., Park J. S., Jun J. Y., Jeong Y. Y., Kang H. K.. ( 2013;). Establishment of a protocol for determining gastrointestinal transit time in mice using barium and radiopaque markers. . Korean J Radiol 14:, 45–50. [CrossRef][PubMed]
    [Google Scholar]
  41. Pérez P. F., Doré J., Leclerc M., Levenez F., Benyacoub J., Serrant P., Segura-Roggero I., Schiffrin E. J., Donnet-Hughes A.. ( 2007;). Bacterial imprinting of the neonatal immune system: lessons from maternal cells. ? Pediatrics 119:, e724–e732. [CrossRef][PubMed]
    [Google Scholar]
  42. Rasko D. A., Altherr M. R., Han C. S., Ravel J.. ( 2005;). Genomics of the Bacillus cereus group of organisms. . FEMS Microbiol Rev 29:, 303–329.[PubMed]
    [Google Scholar]
  43. Rowan N. J., Deans K., Anderson J. G., Gemmell C. G., Hunter I. S., Chaithong T.. ( 2001;). Putative virulence factor expression by clinical and food isolates of Bacillus spp. after growth in reconstituted infant milk formulae. . Appl Environ Microbiol 67:, 3873–3881. [CrossRef][PubMed]
    [Google Scholar]
  44. Rumbo M., Sierro F., Debard N., Kraehenbuhl J. P., Finke D.. ( 2004;). Lymphotoxin beta receptor signaling induces the chemokine CCL20 in intestinal epithelium. . Gastroenterology 127:, 213–223. [CrossRef][PubMed]
    [Google Scholar]
  45. Sainte-Marie G.. ( 1962;). A paraffin embedding technique for studies employing immunofluorescence. . J Histochem Cytochem 10:, 250–256. [CrossRef]
    [Google Scholar]
  46. Salamitou S., Ramisse F., Brehélin M., Bourguet D., Gilois N., Gominet M., Hernandez E., Lereclus D.. ( 2000;). The PlcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. . Microbiology 146:, 2825–2832.[PubMed]
    [Google Scholar]
  47. Schoeni J. L., Wong A. C. L.. ( 2005;). Bacillus cereus food poisoning and its toxins. . J Food Prot 68:, 636–648.[PubMed]
    [Google Scholar]
  48. Slamti L., Lereclus D.. ( 2005;). Specificity and polymorphism of the PlcR-PapR quorum-sensing system in the Bacillus cereus group. . J Bacteriol 187:, 1182–1187. [CrossRef][PubMed]
    [Google Scholar]
  49. Slamti L., Perchat S., Gominet M., Vilas-Bôas G., Fouet A., Mock M., Sanchis V., Chaufaux J., Gohar M., Lereclus D.. ( 2004;). Distinct mutations in PlcR explain why some strains of the Bacillus cereus group are nonhemolytic. . J Bacteriol 186:, 3531–3538. [CrossRef][PubMed]
    [Google Scholar]
  50. Smaldini P., Curciarello R., Candreva A., Rey M. A., Fossati C. A., Petruccelli S., Docena G. H.. ( 2012;). In vivo evidence of cross-reactivity between cow’s milk and soybean proteins in a mouse model of food allergy. . Int Arch Allergy Immunol 158:, 335–346. [CrossRef][PubMed]
    [Google Scholar]
  51. Stenfors Arnesen L. P., Fagerlund A., Granum P. E.. ( 2008;). From soil to gut: Bacillus cereus and its food poisoning toxins. . FEMS Microbiol Rev 32:, 579–606. [CrossRef][PubMed]
    [Google Scholar]
  52. Thomas B. S., Bankowski M. J., Lau W. K.. ( 2012;). Native valve Bacillus cereus endocarditis in a non-intravenous-drug-abusing patient. . J Clin Microbiol 50:, 519–521. [CrossRef][PubMed]
    [Google Scholar]
  53. Wijnands L. M., Pielaat A., Dufrenne J. B., Zwietering M. H., van Leusden F. M.. ( 2009;). Modelling the number of viable vegetative cells of Bacillus cereus passing through the stomach. . J Appl Microbiol 106:, 258–267. [CrossRef][PubMed]
    [Google Scholar]
  54. Wright A. M., Beres S. B., Consamus E. N., Long S. W., Flores A. R., Barrios R., Richter G. S., Oh S. Y., Garufi G.. & other authors ( 2011;). Rapidly progressive, fatal, inhalation anthrax-like infection in a human: case report, pathogen genome sequencing, pathology, and coordinated response. . Arch Pathol Lab Med 135:, 1447–1459. [CrossRef][PubMed]
    [Google Scholar]
  55. Xie T., Sun C., Uslu K., Auth R. D., Fang H., Ouyang W., Frucht D. M.. ( 2013;). A new murine model for gastrointestinal anthrax infection. . PLoS ONE 8:, e66943. [CrossRef][PubMed]
    [Google Scholar]
  56. Zenewicz L. A., Wei Z., Goldfine H., Shen H.. ( 2005;). Phosphatidylinositol-specific phospholipase C of Bacillus anthracis down-modulates the immune response. . J Immunol 174:, 8011–8016. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.079939-0
Loading
/content/journal/jmm/10.1099/jmm.0.079939-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error