1887

Abstract

Acquired superficial fungal infections are among the most common infections. It is necessary to create new effective and non-toxic disinfectants. AKWATON is a new disinfectant of the polymeric guanidine family. Its fungicidal activity against and its toxicity assessment were determined in this study. The MIC, minimum fungicidal concentration (MFC) and time required for its fungicidal activity at the MFC were evaluated using the official methods of analysis of the Association of Official Analytical Chemists, with modifications as recommended by the Canadian General Standards Board. The toxic effects of AKWATON and of four commercial disinfectants were evaluated on rat pancreatic (C2C12) and muscle (RnM5F) cells, using the trypan blue and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] methods. The MIC, MFC and time required for the fungicidal activity of AKWATON at the MFC were 0.025 % (w/v), 0.045 % (w/v) and 2.5 min, respectively. Cell cultures and the different tests carried out showed that the AKWATON-based disinfectant killed fewer cells than the commercial disinfectants, sparing 80 % of C2C12 cells and 65 % of RnM5F cells, whilst some of the well-known disinfectants currently on the market killed 85–100 % of cells. This study demonstrates that AKWATON has great potential as an odourless, colourless, non-corrosive and safe disinfectant for use in hospitals, the agriculture industry, farming and household facilities.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.079467-0
2015-01-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/1/59.html?itemId=/content/journal/jmm/10.1099/jmm.0.079467-0&mimeType=html&fmt=ahah

References

  1. Beloian A.. ( 2005;). Disinfectants. . In Official Methods of Analysis of AOAC International, , 18th edn., pp. 133–146. Edited by Horwitz W., Latimer G. W. Jr.. Rockville, MD:: Association of Official Analytical Chemists International;.
    [Google Scholar]
  2. Buxbaum A., Kratzer C., Graninger W., Georgopoulos A.. ( 2006;). Antimicrobial and toxicological profile of the new biocide Akacid plus®. . J Antimicrob Chemother 58:, 193–197. [CrossRef][PubMed]
    [Google Scholar]
  3. El Fari M., Tietz H. J., Presber W., Sterry W., Gräser Y.. ( 1999;). Development of an oligonucleotide probe specific for Trichophyton rubrum. . Br J Dermatol 141:, 240–245. [CrossRef][PubMed]
    [Google Scholar]
  4. Feng L., Wu F., Li J., Jiang Y., Duan X. .( 2011;). Antifungal activities of polyhexamethylene biguanide and polyhexamethylene guanide against the citrus sour rot pathogen Geotrichum citri-aurantii in vitro and in vivo. . Postharvest Biol Technol 61:, 160–164. [CrossRef]
    [Google Scholar]
  5. Gilbert P., Moore L. E.. ( 2005;). Cationic antiseptics: diversity of action under a common epithet. . J Appl Microbiol 99:, 703–715. [CrossRef][PubMed]
    [Google Scholar]
  6. Greenberg A. E.. ( 1998;). 9610 Detection of fungi. . In Standard Methods for the Examination of Water and Wastewater, , 20th edn., pp. 9–32. Washington, DC:: American Public Health Association;.
    [Google Scholar]
  7. Guan Y., Qian L., Xiao H., Zheng A.. ( 2008;). Preparation of novel antimicrobial-modified starch and its adsorption on cellulose fibers: Part I. Optimization of synthetic conditions and antimicrobial activities. . Cellulose 15:, 609–618. [CrossRef]
    [Google Scholar]
  8. Gupta A. K., Tomas E.. ( 2003;). New antifungal agents. . Dermatol Clin 21:, 565–576. [CrossRef][PubMed]
    [Google Scholar]
  9. Gupta A. K., Ahmad I., Summerbell R. C.. ( 2001;). Comparative efficacies of commonly used disinfectants and antifungal pharmaceutical spray preparations against dermatophytic fungi. . Med Mycol 39:, 321–328. [CrossRef][PubMed]
    [Google Scholar]
  10. Hashimoto T., Blumenthal H. J.. ( 1978;). Survival and resistance of Trichophyton mentagrophytes arthrospores. . Appl Environ Microbiol 35:, 274–277.[PubMed]
    [Google Scholar]
  11. Hiti K., Walochnik J., Haller-Schober E. M., Faschinger C., Aspöck H.. ( 2002;). Viability of Acanthamoeba after exposure to a multipurpose disinfecting contact lens solution and two hydrogen peroxide systems. . Br J Ophthalmol 86:, 144–146. [CrossRef][PubMed]
    [Google Scholar]
  12. Koffi-Nevry R., Manizan A., Tano K., Yué Bi Y., Koussémon M., Oulé M. K.. ( 2011;). Assessment of the antifungal activities of polyhexamethylene-guanidine hydrochloride (PHMGH)-based disinfectant against fungi isolated from papaya (Carica papaya L.) fruit. . Afr J Microbiol Res 5:, 4162–4169.
    [Google Scholar]
  13. Krebs F. C., Miller S. R., Ferguson M. L., Labib M., Rando R. F., Wigdahl B.. ( 2005;). Polybiguanides, particularly polyethylene hexamethylene biguanide, have activity against human immunodeficiency virus type 1. . Biomed Pharmacother 59:, 438–445. [CrossRef][PubMed]
    [Google Scholar]
  14. Kuznetsov Y. I.. ( 2004;). Physicochemical aspects of metal corrosion inhibition in aqueous solutions. . Russ Chem Rev 73:, 75–87. [CrossRef]
    [Google Scholar]
  15. Kusnetsov J. M., Tulkki A. I., Ahonen H. E., Martikainen P. J.. ( 1997;). Efficacy of three prevention strategies against Legionella in cooling water systems. . J Appl Microbiol 82:, 763–768. [CrossRef][PubMed]
    [Google Scholar]
  16. Makimura K., Mochizuki T., Hasegawa A., Uchida K., Saito H., Yamaguchi H.. ( 1998;). Phylogenetic classification of Trichophyton mentagrophytes complex strains based on DNA sequences of nuclear ribosomal internal transcribed spacer 1 regions. . J Clin Microbiol 36:, 2629–2633.[PubMed]
    [Google Scholar]
  17. McDonnell G., Russell A. D.. ( 1999;). Antiseptics and disinfectants: activity, action, and resistance. . Clin Microbiol Rev 12:, 147–179.[PubMed]
    [Google Scholar]
  18. Moriello K. A., Kunder D., Hondzo H.. ( 2013;). Efficacy of eight commercial disinfectants against Microsporum canis and Trichophyton spp. infective spores on an experimentally contaminated textile surface. . Vet Dermatol 24:, 621–623, e151–e152. [CrossRef][PubMed]
    [Google Scholar]
  19. Müller G., Kramer A.. ( 2005;). Effect of selected wound antiseptics on adult articular cartilage (bovine sesamoid bone) in the presence of Escherichia coli and Staphylococcus aureus.. J Orthop Res 23:, 127–133. [CrossRef][PubMed]
    [Google Scholar]
  20. Oulé M. K., Azinwi R., Bernier A.-M., Kablan T., Maupertuis A.-M., Mauler S., Nevry R. K., Dembélé K., Forbes L., Diop L.. ( 2008;). Polyhexamethylene guanidine hydrochloride-based disinfectant: a novel tool to fight meticillin-resistant Staphylococcus aureus and nosocomial infections. . J Med Microbiol 57:, 1523–1528. [CrossRef][PubMed]
    [Google Scholar]
  21. Oulé M. K., Quinn K., Dickman M., Bernier A.-M., Rondeau S., De Moissac D., Boisvert A., Diop L.. ( 2012;). Akwaton, polyhexamethylene-guanidine hydrochloride-based sporicidal disinfectant: a novel tool to fight bacterial spores and nosocomial infections. . J Med Microbiol 61:, 1421–1427. [CrossRef][PubMed]
    [Google Scholar]
  22. Rosin M., Welk A., Bernhardt O., Ruhnau M., Pitten F.-A., Kocher T., Kramer A.. ( 2001;). Effect of a polyhexamethylene biguanide mouthrinse on bacterial counts and plaque. . J Clin Periodontol 28:, 1121–1126. [CrossRef][PubMed]
    [Google Scholar]
  23. Soberón J. R., Sgariglia M. A., Sampietro D. A., Quiroga E. N., Vattuone M. A.. ( 2007;). Antibacterial activity of plant extracts from northwestern Argentina. . J Appl Microbiol 102:, 1450–1461. [CrossRef][PubMed]
    [Google Scholar]
  24. Springthorpe S.. ( 2000;). Disinfection of surfaces and equipment. . J Can Dent Assoc 66:, 558–560.[PubMed]
    [Google Scholar]
  25. Sun P.-L., Hsieh H.-M., Ju Y.-M., Jee S.-H.. ( 2010;). Molecular characterization of dermatophytes of the Trichophyton mentagrophytes complex found in Taiwan with emphasis on their correlation with clinical observations. . Br J Dermatol 163:, 1312–1318. [CrossRef][PubMed]
    [Google Scholar]
  26. Weitzman I., Summerbell R. C.. ( 1995;). The dermatophytes. . Clin Microbiol Rev 8:, 240–259.[PubMed]
    [Google Scholar]
  27. Yazdanparast S. A., Barton R. C.. ( 2006;). Arthroconidia production in Trichophyton rubrum and a new ex vivo model of onychomycosis. . J Med Microbiol 55:, 1577–1581. [CrossRef][PubMed]
    [Google Scholar]
  28. Zhang Y. M., Jiang J. M., Chen Y. M.. ( 1999;). Synthesis and antimicrobial activity of polymeric guanidine and biguanidine salts. . Polymer 40:, 6189–6198. [CrossRef]
    [Google Scholar]
  29. Zhou Z. X., Wei D. F., Guan Y., Zheng A. N., Zhong J. J.. ( 2009;). Damage of Escherichia coli membrane by bactericidal agent polyhexamethylene guanidine hydrochloride: micrographic evidences. . J Appl Microbiol 108:, 898–907. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.079467-0
Loading
/content/journal/jmm/10.1099/jmm.0.079467-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error