1887

Abstract

Resistance to β-lactams among Gram-negative bacteria is a worldwide issue. Increased prevalence of extended-spectrum β-lactamase (ESBL)-producers and the dissemination of carbapenem-resistance genes are particularly concerning. ESBL-producing strains are common in the Kingdom of Saudi Arabia, particularly among the , and carbapenem resistance is on the increase, especially among the non-fermenters. β-lactamase production is a major mechanism of resistance to these agents and although β-lactamase-producing strains have been documented in the Kingdom, relatively few reports characterized the molecular basis of this production. Nevertheless, available data suggest that CTX-M (CTX-M-15 in particular) is the predominant ESBL in the , with SHV also being prevalent in . Carbapenem resistance in the latter is mainly due to OXA-48 and NDM-1. In , VEB-like enzymes are the most common ESBLs, and VIM is the prevalent metallo-β-lactamase. OXA-10 extended-spectrum enzymes are also frequent. PER and GES ESBLs have been reported in , and oxacillinases (OXA-23 in particular) are the dominant carbapanamases in this species.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.077834-0
2015-02-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/2/127.html?itemId=/content/journal/jmm/10.1099/jmm.0.077834-0&mimeType=html&fmt=ahah

References

  1. Abdalhamid B., Hassan H., Itbaileh A., Shorman M. 2014; Characterization of carbapenem-resistant Acinetobacter baumannii clinical isolates in a tertiary care hospital in Saudi Arabia. New Microbiol 37:65–73[PubMed]
    [Google Scholar]
  2. Abo-Shadi M. A., Al-Johani A. A., Bahashwan A. A. 2012; Antimicrobial resistance in pathogens causing pediatrics bloodstream infections in a Saudi hospital. Br Microbiol Res J 2:212–227 [CrossRef]
    [Google Scholar]
  3. Al-Agamy M. H. M., Shibl A. M., Tawfik A. F., Elbannai A. R. 2009a; Klebsiella pneumoniae producing CTX-M-15 genes from neonatal intensive care unit in Saudi Arabia. Res J Microbiol 4:278–285 [CrossRef]
    [Google Scholar]
  4. Al-Agamy M. H., Shibl A. M., Tawfik A. F. 2009b; Prevalence and molecular characterization of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in Riyadh, Saudi Arabia. Ann Saudi Med 29:253–257 [CrossRef][PubMed]
    [Google Scholar]
  5. Al-Agamy M. H., Shibl A. M., Tawfik A. F., Radwan H. H. 2009c; High prevalence of metallo-β-lactamase-producing Pseudomonas aeruginosa from Saudi Arabia. J Chemother 21:461–462 [CrossRef][PubMed]
    [Google Scholar]
  6. Al-Agamy M. H., Shibl A. M., Tawfik A. F., Elkhizzi N. A., Livermore D. M. 2012; Extended-spectrum and metallo-beta-lactamases among ceftazidime-resistant Pseudomonas aeruginosa in Riyadh, Saudi Arabia. J Chemother 24:97–100 [CrossRef][PubMed]
    [Google Scholar]
  7. Al-Agamy M. H., Shibl A. M., Elkhizzi N. A., Meunier D., Turton J. F., Livermore D. M. 2013; Persistence of Klebsiella pneumoniae clones with OXA-48 or NDM carbapenemases causing bacteraemias in a Riyadh hospital. Diagn Microbiol Infect Dis 76:214–216 [CrossRef][PubMed]
    [Google Scholar]
  8. Al Johani S. M., Akhter J., Balkhy H., El-Saed A., Younan M., Memish Z. 2010; Prevalence of antimicrobial resistance among gram-negative isolates in an adult intensive care unit at a tertiary care center in Saudi Arabia. Ann Saudi Med 30:364–369[PubMed]
    [Google Scholar]
  9. Al-Obeid S., Bremont S., Jabri L., Massoudi N., Haddad Q. 2008; Klebsiella pneumoniae LO10 producing extended-spectrum beta-lactamase SHV-12 in Saudi Arabia. J Chemother 20:709–713 [CrossRef][PubMed]
    [Google Scholar]
  10. Al-Qadheeb N. S., Althawadi S., Alkhalaf A., Hosaini S., Alrajhi A. A. 2010; Evolution of tigecycline resistance in Klebsiella pneumoniae in a single patient. Ann Saudi Med 30:404–407[PubMed]
    [Google Scholar]
  11. Al-Qahtani A. A., Al-Agamy M. H., Ali M. S., Al-Ahdal M. N., Aljohi M. A., Shibl A. M. 2014; Characterization of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae from Riyadh, Saudi Arabia. J Chemother 26:139–145 [CrossRef][PubMed]
    [Google Scholar]
  12. Al Shirawi N., Memish Z. A., Cherfan A., Al Shimemeri A. 2006; Post-neurosurgical meningitis due to multidrug-resistant Acinetobacter baumanii treated with intrathecal colistin: case report and review of the literature. J Chemother 18:554–558 [CrossRef][PubMed]
    [Google Scholar]
  13. Alsultan A. A. 2012; Emergence of carbapenem-resistant Acinetobacter baumannii producing OXA-23 gene in a major Saudi Arabian hospital. In Abstracts of the 22nd European Congress of Clinical Microbiology and Infectious Diseases (ECCMID). London, United Kingdom: Clin Microbiol Infection; 18:(Suppl. s3)P2029
    [Google Scholar]
  14. Alsultan A. A., Hamouda A., Evans B. A., Amyes S. G. 2009; Acinetobacter baumannii: emergence of four strains with novel bla OXA-51-like genes in patients with diabetes mellitus. J Chemother 21:290–295 [CrossRef][PubMed]
    [Google Scholar]
  15. Alsultan A. A., Evans B. A., Elsayed E. A., Al-Thawadi S. I., Al-Taher A. Y., Amyes S. G., Al-Dughaym A. M., Hamouda A. 2013; High frequency of carbapenem-resistant Acinetobacter baumannii in patients with diabetes mellitus in Saudi Arabia. J Med Microbiol 62:885–888 [CrossRef][PubMed]
    [Google Scholar]
  16. Aly M., Tayeb H. T., Al Johani S. M., Alyamani E. J., Aldughaishem F., Alabdulkarim I., Balkhy H. H. 2014; Genetic diversity of OXA-51-like genes among multidrug-resistant Acinetobacter baumannii in Riyadh, Saudi Arabia. Eur J Clin Microbiol Infect Dis 33:1223–1228 [CrossRef][PubMed]
    [Google Scholar]
  17. Asghar A. 2012; Frequency and antimicrobial susceptibility of Pseudomonas aeruginosa isolated from Makkah hospitals, Saudi Arabia. In Abstracts of the 22nd European Congress of Clinical Microbiology and Infectious Diseases (ECCMID). London, United Kingdom: Clin Microbiol Infection; 18:(Suppl. s3)R2482
    [Google Scholar]
  18. Balkhy H., Uz Zaman T., Al Drees M., Al Juhaini S., Al Qahtani A., Al Ahdal M. 2012a; Genetic analysis of the first outbreak of carbapenem-resistant Klebsiella pneumoniae in Saudi Arabia. In Abstracts of the 22nd European Congress of Clinical Microbiology and Infectious Diseases (ECCMID) London, United Kingdom: Clin Microbiol Infection; 18:(Suppl. s3)R2509–R2544
    [Google Scholar]
  19. Balkhy H. H., El-Saed A., Al Johani S. M., Francis C., Al-Qahtani A. A., Al-Ahdal M. N., Altayeb H. T., Arabi Y., Alothman A., Sallah M. 2012b; The epidemiology of the first described carbapenem-resistant Klebsiella pneumoniae outbreak in a tertiary care hospital in Saudi Arabia: how far do we go?. Eur J Clin Microbiol Infect Dis 31:1901–1909 [CrossRef][PubMed]
    [Google Scholar]
  20. Bindayna K., Khanfar H. S., Senok A. C., Botta G. A. 2010; Predominance of CTX-M genotype among extended spectrum beta lactamase isolates in a tertiary hospital in Saudi Arabia. Saudi Med J 31:859–863[PubMed]
    [Google Scholar]
  21. Bukhary Z., Mahmood W., Al-Khani A., Al-Abdely H. M. 2005; Treatment of nosocomial meningitis due to a multidrug resistant Acinetobacter baumannii with intraventricular colistin. Saudi Med J 26:656–658[PubMed]
    [Google Scholar]
  22. Carattoli A. 2009; Resistance plasmid families in Enterobacteriaceae . Antimicrob Agents Chemother 53:2227–2238 [CrossRef][PubMed]
    [Google Scholar]
  23. El-Ageery S. M., Al-Hazmi S. S. 2014; Microbiological and molecular detection of VIM-1 metallo beta lactamase-producing Acinetobacter baumannii. . Eur Rev Med Pharmacol Sci 18:965–970[PubMed]
    [Google Scholar]
  24. Franklin C., Liolios L., Peleg A. Y. 2006; Phenotypic detection of carbapenem-susceptible metallo-beta-lactamase-producing gram-negative bacilli in the clinical laboratory. J Clin Microbiol 44:3139–3144 [CrossRef][PubMed]
    [Google Scholar]
  25. Fritsche T. R., Sader H. S., Toleman M. A., Walsh T. R., Jones R. N. 2005; Emerging metallo-β-lactamase-mediated resistances: a summary report from the worldwide SENTRY antimicrobial surveillance program. Clin Infect Dis 41:Suppl. 4S276–S278 [CrossRef][PubMed]
    [Google Scholar]
  26. Giske C. G., Monnet D. L., Cars O., Carmeli Y. ReAct–Action on Antibiotic Resistance 2008; Clinical and economic impact of common multidrug-resistant gram-negative bacilli. Antimicrob Agents Chemother 52:813–821 [CrossRef][PubMed]
    [Google Scholar]
  27. Gordon N. C., Wareham D. W. 2010; Multidrug-resistant Acinetobacter baumannii: mechanisms of virulence and resistance. Int J Antimicrob Agents 35:219–226 [CrossRef][PubMed]
    [Google Scholar]
  28. Guerin F., Henegar C., Spiridon G., Launay O., Salmon-Ceron D., Poyart C. 2005; Bacterial prostatitis due to Pseudomonas aeruginosa harbouring the bla VIM-2 metallo-β-lactamase gene from Saudi Arabia. J Antimicrob Chemother 56:601–602 [CrossRef][PubMed]
    [Google Scholar]
  29. Hamidian M., Hall R. M. 2013; ISAba1 targets a specific position upstream of the intrinsic ampC gene of Acinetobacter baumannii leading to cephalosporin resistance. J Antimicrob Chemother 68:2682–2683 [CrossRef][PubMed]
    [Google Scholar]
  30. Hassan M. I., Alkharsah K. R., Alzahrani A. J., Obeid O. E., Khamis A. H., Diab A. 2013; Detection of extended spectrum beta-lactamases-producing isolates and effect of AmpC overlapping. J Infect Dev Ctries 7:618–629 [CrossRef][PubMed]
    [Google Scholar]
  31. Johnson A. P., Woodford N. 2013; Global spread of antibiotic resistance: the example of New Delhi metallo-β-lactamase (NDM)-mediated carbapenem resistance. J Med Microbiol 62:499–513 [CrossRef][PubMed]
    [Google Scholar]
  32. Juan Nicolau C., Oliver A. 2010; Carbapenemases in Pseudomonas spp.. Enferm Infecc Microbiol Clin 28:Suppl. 119–28 (in Spanish) [PubMed] [CrossRef]
    [Google Scholar]
  33. Kader A. A., Angamuthu K. 2005; Extended-spectrum beta-lactamases in urinary isolates of Escherichia coli, Klebsiella pneumoniae and other gram-negative bacteria in a hospital in Eastern Province, Saudi Arabia. Saudi Med J 26:956–959[PubMed]
    [Google Scholar]
  34. Kader A. A., Kumar A., Dass S. M. 2004; Antimicrobial resistance patterns of gram-negative bacteria isolated from urine cultures at a general hospital. Saudi J Kidney Dis Transpl 15:135–139[PubMed]
    [Google Scholar]
  35. Lagatolla C., Tonin E. A., Monti-Bragadin C., Dolzani L., Gombac F., Bearzi C., Edalucci E., Gionechetti F., Rossolini G. M. 2004; Endemic carbapenem-resistant Pseudomonas aeruginosa with acquired metallo-β-lactamase determinants in European hospital. Emerg Infect Dis 10:535–538 [CrossRef][PubMed]
    [Google Scholar]
  36. Lee K., Lee W. G., Uh Y., Ha G. Y., Cho J., Chong Y. Korean Nationwide Surveillance of Antimicrobial Resistance Group 2003; VIM- and IMP-type metallo-β-lactamase-producing Pseudomonas spp. and Acinetobacter spp. in Korean hospitals. Emerg Infect Dis 9:868–871 [CrossRef][PubMed]
    [Google Scholar]
  37. Lister P. D., Wolter D. J., Hanson N. D. 2009; Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22:582–610 [CrossRef][PubMed]
    [Google Scholar]
  38. Livermore D. M. 2012; Current epidemiology and growing resistance of Gram-negative pathogens. Korean J Intern Med 27:128–142 [CrossRef][PubMed]
    [Google Scholar]
  39. Mah M. W., Memish Z. A., Cunningham G., Bannatyne R. M. 2001; Outbreak of Acinetobacter baumannii in an intensive care unit associated with tracheostomy. Am J Infect Control 29:284–288 [CrossRef][PubMed]
    [Google Scholar]
  40. Manzar S. 2004; Outbreak of multidrug resistant Acinetobacter in the neonatal intensive care unit. Saudi Med J 25:961–963[PubMed]
    [Google Scholar]
  41. Marie M. A. M., John J., Krishnappa L. G., Gopalkrishnan S. 2013; Molecular characterization of the β-lactamases in Escherichia coli and Klebsiella pneumoniae from a tertiary care hospital in Riyadh, Saudi Arabia. Microbiol Immunol 57:805–810 [CrossRef][PubMed]
    [Google Scholar]
  42. Memish Z. A., Shibl A. M., Kambal A. M., Ohaly Y. A., Ishaq A., Livermore D. M. 2012; Antimicrobial resistance among non-fermenting Gram-negative bacteria in Saudi Arabia. J Antimicrob Chemother 67:1701–1705 [CrossRef][PubMed]
    [Google Scholar]
  43. Mirsalehian A., Feizabadi M., Nakhjavani F. A., Jabalameli F., Goli H., Kalantari N. 2010; Detection of VEB-1, OXA-10 and PER-1 genotypes in extended-spectrum β-lactamase-producing Pseudomonas aeruginosa strains isolated from burn patients. Burns 36:70–74 [CrossRef][PubMed]
    [Google Scholar]
  44. Nordmann P. 2010; Gram-negative bacteria with resistance to carbapenems. Med Sci (Paris) 26:950–959 (in French) [CrossRef][PubMed]
    [Google Scholar]
  45. Nordmann P., Naas T., Poirel L. 2011; Global spread of carbapenemase-producing Enterobacteriaceae . Emerg Infect Dis 17:1791–1798 [CrossRef][PubMed]
    [Google Scholar]
  46. Paterson D. L. 2006; Resistance in gram-negative bacteria: Enterobacteriaceae. . Am J Infect Control 34:Suppl. 1S20–S28S64–S73 [CrossRef][PubMed]
    [Google Scholar]
  47. Paterson D. L., Hujer K. M., Hujer A. M., Yeiser B., Bonomo M. D., Rice L. B., Bonomo R. A. International Klebsiella Study Group 2003; Extended-spectrum β-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type β-lactamases. Antimicrob Agents Chemother 47:3554–3560 [CrossRef][PubMed]
    [Google Scholar]
  48. Peleg A. Y., Franklin C., Bell J. M., Spelman D. W. 2005; Dissemination of the metallo-β-lactamase gene bla IMP-4 among gram-negative pathogens in a clinical setting in Australia. Clin Infect Dis 41:1549–1556 [CrossRef][PubMed]
    [Google Scholar]
  49. Perez F., Hujer A. M., Hujer K. M., Decker B. K., Rather P. N., Bonomo R. A. 2007; Global challenge of multidrug-resistant Acinetobacter baumannii . Antimicrob Agents Chemother 51:3471–3484 [CrossRef][PubMed]
    [Google Scholar]
  50. Ribeiro A., Al-Agamy M. H., Shibl A. M., Tawfik A. F., Courvalin P., Jeannot K. 2012; Molecular epidemiology and mechanisms of carbapenem-resistant Acinetobacter baumannii in a Saudi Arabia hospital. In Abstracts of the 22nd European Congress of Clinical Microbiology and Infectious Diseases (ECCMID) London, United Kingdom: Clin Microbiol Infection; 18:(Suppl. s3)P1256
    [Google Scholar]
  51. Rupp M. E., Fey P. D. 2003; Extended spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. Drugs 63:353–365 [CrossRef][PubMed]
    [Google Scholar]
  52. Ryoo N. H., Kim E. C., Hong S. G., Park Y. J., Lee K., Bae I. K., Song E. H., Jeong S. H. 2005; Dissemination of SHV-12 and CTX-M-type extended-spectrum β-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae and emergence of GES-3 in Korea. J Antimicrob Chemother 56:698–702 [CrossRef][PubMed]
    [Google Scholar]
  53. Sacha P., Wieczorek P., Hauschild T., Zórawski M., Olszańska D., Tryniszewska E. 2008; Metallo-beta-lactamases of Pseudomonas aeruginosa–a novel mechanism resistance to beta-lactam antibiotics. Folia Histochem Cytobiol 46:137–142 [CrossRef][PubMed]
    [Google Scholar]
  54. Saeed N. K., Kambal A. M., El-Khizzi N. A. 2010; Antimicrobial-resistant bacteria in a general intensive care unit in Saudi Arabia. Saudi Med J 31:1341–1349[PubMed]
    [Google Scholar]
  55. Shibl A. M., Al-Agamy M. H., Khubnani H., Senok A. C., Tawfik A. F., Livermore D. M. 2012; High prevalence of acquired quinolone-resistance genes among Enterobacteriaceae from Saudi Arabia with CTX-M-15 β-lactamase. Diagn Microbiol Infect Dis 73:350–353 [CrossRef][PubMed]
    [Google Scholar]
  56. Shibl A., Al-Agamy M., Memish Z., Senok A., Khader S. A., Assiri A. 2013; The emergence of OXA-48- and NDM-1-positive Klebsiella pneumoniae in Riyadh, Saudi Arabia. Int J Infect Dis 17:e1130-3 [CrossRef]
    [Google Scholar]
  57. Somily A. M., Shakoor Z., Manneh K., Alsubaie S. M. 2012; Five-year screening and phenotypic classification of extended-spectrum beta-lactamases producing Escherichia coli and Klebsiella pneumoniae at a tertiary care university hospital in Riyadh, Saudi Arabia. In Abstracts of the 22nd European Congress of Clinical Microbiology and Infectious Diseases (ECCMID). London, United Kingdom: Clin Microbiol Infection; 18(Suppl. s3)O472–P1866
    [Google Scholar]
  58. Strateva T., Yordanov D. 2009; Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J Med Microbiol 58:1133–1148 [CrossRef][PubMed]
    [Google Scholar]
  59. Tawfik A. F., Alswailem A. M., Shibl A. M., Al-Agamy M. H. 2011; Prevalence and genetic characteristics of TEM, SHV, and CTX-M in clinical Klebsiella pneumoniae isolates from Saudi Arabia. Microb Drug Resist 17:383–388 [CrossRef][PubMed]
    [Google Scholar]
  60. Tawfik A. F., Shibl A. M., Aljohi M. A., Altammami M. A., Al-Agamy M. H. 2012; Distribution of Ambler class A, B and D β-lactamases among Pseudomonas aeruginosa isolates . Burns 38:855–860 [CrossRef][PubMed]
    [Google Scholar]
  61. Tzouvelekis L. S., Markogiannakis A., Psichogiou M., Tassios P. T., Daikos G. L. 2012; Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev 25:682–707 [CrossRef][PubMed]
    [Google Scholar]
  62. Valenza G., Joseph B., Elias J., Claus H., Oesterlein A., Engelhardt K., Turnwald D., Frosch M., Abele-Horn M., Schoen C. 2010; First survey of metallo-β-lactamases in clinical isolates of Pseudomonas aeruginosa in a German university hospital. Antimicrob Agents Chemother 54:3493–3497 [CrossRef][PubMed]
    [Google Scholar]
  63. Villegas M. V., Kattan J. N., Quinteros M. G., Casellas J. M. 2008; Prevalence of extended-spectrum β-lactamases in South America. Clin Microbiol Infect 14:Suppl. 1154–158 [CrossRef][PubMed]
    [Google Scholar]
  64. Walther-Rasmussen J., Høiby N. 2006; OXA-type carbapenemases. J Antimicrob Chemother 57:373–383 [CrossRef][PubMed]
    [Google Scholar]
  65. Wang J., Zhou J. Y., Qu T. T., Shen P., Wei Z. Q., Yu Y. S., Li L. J. 2010; Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Chinese hospitals. Int J Antimicrob Agents 35:486–491 [CrossRef][PubMed]
    [Google Scholar]
  66. Woodford N., Zhang J., Kaufmann M. E., Yarde S., Tomas M. M., Faris C., Vardhan M. S., Dawson S., Cotterill S. L., Livermore D. M. 2008; Detection of Pseudomonas aeruginosa isolates producing VEB-type extended-spectrum β-lactamases in the United Kingdom. J Antimicrob Chemother 62:1265–1268 [CrossRef][PubMed]
    [Google Scholar]
  67. Yezli S., Shibl A. M., Livermore D. M., Memish Z. A. 2014; Prevalence and antimicrobial resistance among Gram-negative pathogens in Saudi Arabia. J Chemother 26:257–272 [CrossRef][PubMed]
    [Google Scholar]
  68. Yong D., Toleman M. A., Giske C. G., Cho H. S., Sundman K., Lee K., Walsh T. R. 2009; Characterization of a new metallo-β-lactamase gene, bla NDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53:5046–5054 [CrossRef][PubMed]
    [Google Scholar]
  69. Zowawi H. M., Sartor A. L., Balkhy H. H., Walsh T. R., Al Johani S. M., AlJindan R. Y., Alfaresi M., Ibrahim E., Al-Jardani A. et al. 2014; Molecular characterization of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in the countries of the Gulf Cooperation Council: dominance of OXA-48 and NDM producers. Antimicrob Agents Chemother 58:3085–3090 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.077834-0
Loading
/content/journal/jmm/10.1099/jmm.0.077834-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error