1887

Abstract

A series of clinical isolates of drug-resistant (DR) with diverse drug susceptibility was detected from eight patients in the emergency intensive care unit of Tokai University Hospital. The initial isolate was obtained in March 2010 ( Tokai strain 1); subsequently, seven isolates were obtained from patients ( Tokai strains 2–8) and one isolate was obtained from an air-fluidized bed used by five of the patients during the 3 months from August to November 2011. The isolates were classified into three types of antimicrobial drug resistance patterns (RRR, SRR and SSR) according to their susceptibility (S) or resistance (R) to imipenem, amikacin and ciprofloxacin, respectively. Genotyping of these isolates by multilocus sequence typing revealed one sequence type, ST208, whilst that by a DiversiLab analysis revealed two subtypes. All the isolates were positive for and , as assessed by PCR and DNA sequencing. Tokai strains 1–8 and 10 (RRR, SRR and SSR) had quinolone resistance-associated mutations in , as revealed by DNA sequencing. The IS upstream of and aminoglycoside resistance-associated gene, , were detected in Tokai strains 1–7 and 10 (RRR and SRR) as assessed by PCR. Among the genes encoding resistance–nodulation–division family pumps ( and ) and outer-membrane porins ( and ), overexpression of and and suppression of and were seen in isolates of Tokai strain 2 (RRR), as assessed by real-time PCR. Thus, the molecular characterization of a series of isolates of DR revealed the outbreak of ST208 and diverse antimicrobial drug susceptibilities, which almost correlated with differential gene alterations responsible for each type of drug resistance.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.077503-0
2014-11-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/11/1517.html?itemId=/content/journal/jmm/10.1099/jmm.0.077503-0&mimeType=html&fmt=ahah

References

  1. Amin I. M., Richmond G. E., Sen P., Koh T. H., Piddock L. J., Chua K. L.. ( 2013;). A method for generating marker-less gene deletions in multidrug-resistant Acinetobacter baumannii. . BMC Microbiol 13:, 158. [CrossRef][PubMed]
    [Google Scholar]
  2. Arakawa Y., Shibata N., Shibayama K., Kurokawa H., Yagi T., Fujiwara H., Goto M.. ( 2000;). Convenient test for screening metallo-β-lactamase-producing Gram-negative bacteria by using thiol compounds. . J Clin Microbiol 38:, 40–43.[PubMed]
    [Google Scholar]
  3. Asai S., Ohshima T., Yoshihara E., Jin G., Umezawa K., Inokuchi S., Miyachi H.. ( 2011;). Differential co-expression of Mex efflux pumps in a clinical strain of metallo-β-lactamase-producing Pseudomonas aeruginosa during the stepwise evolution of resistance to aminoglycosides. . Infect Dis Clin Pract 19:, 38–42. [CrossRef]
    [Google Scholar]
  4. Bartual S. G., Seifert H., Hippler C., Luzon M. A., Wisplinghoff H., Rodríguez-Valera F.. ( 2005;). Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. . J Clin Microbiol 43:, 4382–4390. [CrossRef][PubMed]
    [Google Scholar]
  5. Bayram Y., Parlak M., Aypak C., Bayram i. ( 2013;). Three-year review of bacteriological profile and antibiogram of burn wound isolates in Van, Turkey. . Int J Med Sci 10:, 19–23. [CrossRef][PubMed]
    [Google Scholar]
  6. Carretto E., Barbarini D., Farina C., Grosini A., Nicoletti P., Manso E..APSI “Acinetobacter Study Group,” Italy ( 2008;). Use of the DiversiLab® semiautomated repetitive-sequence-based polymerase chain reaction for epidemiologic analysis on Acinetobacter baumannii isolates in different Italian hospitals. . Diagn Microbiol Infect Dis 60:, 1–7. [CrossRef][PubMed]
    [Google Scholar]
  7. CLSI ( 2009;). Performance Standards for Antimicrobial Susceptibility Testing; 19th Informational Supplement M100-S19. . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  8. Coyne S., Rosenfeld N., Lambert T., Courvalin P., Périchon B.. ( 2010;). Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. . Antimicrob Agents Chemother 54:, 4389–4393. [CrossRef][PubMed]
    [Google Scholar]
  9. Endo S., Yano H., Hirakata Y., Arai K., Kanamori H., Ogawa M., Shimojima M., Ishibashi N., Aoyagi T.. & other authors ( 2012;). Molecular epidemiology of carbapenem-non-susceptible Acinetobacter baumannii in Japan. . J Antimicrob Chemother 67:, 1623–1626. [CrossRef][PubMed]
    [Google Scholar]
  10. Fernando D., Kumar A.. ( 2012;). Growth phase-dependent expression of RND efflux pump- and outer membrane porin-encoding genes in Acinetobacter baumannii ATCC 19606. . J Antimicrob Chemother 67:, 569–572. [CrossRef][PubMed]
    [Google Scholar]
  11. Fernando D., Zhanel G., Kumar A.. ( 2013;). Antibiotic resistance and expression of resistance-nodulation-division pump- and outer membrane porin-encoding genes in Acinetobacter species isolated from Canadian hospitals. . Can J Infect Dis Med Microbiol 24:, 17–21.[PubMed]
    [Google Scholar]
  12. Fu Y., Zhou J., Zhou H., Yang Q., Wei Z., Yu Y., Li L.. ( 2010;). Wide dissemination of OXA-23-producing carbapenem-resistant Acinetobacter baumannii clonal complex 22 in multiple cities of China. . J Antimicrob Chemother 65:, 644–650. [CrossRef][PubMed]
    [Google Scholar]
  13. Guzek A., Korzeniewski K., Nitsch-Osuch A., Rybicki Z., Prokop E.. ( 2013;). In vitro sensitivity of Acinetobacter baumannii and Pseudomonas aeruginosa to carbapenems among intensive care unit patients. . Adv Exp Med Biol 788:, 109–116. [CrossRef][PubMed]
    [Google Scholar]
  14. Higgins P. G., Schneiders T., Hamprecht A., Seifert H.. ( 2010;). In vivo selection of a missense mutation in adeR and conversion of the novel blaOXA-164 gene into blaOXA-58 in carbapenem-resistant Acinetobacter baumannii isolates from a hospitalized patient. . Antimicrob Agents Chemother 54:, 5021–5027. [CrossRef][PubMed]
    [Google Scholar]
  15. Higgins P. G., Janssen K., Fresen M. M., Wisplinghoff H., Seifert H.. ( 2012;). Molecular epidemiology of Acinetobacter baumannii bloodstream isolates obtained in the United States from 1995 to 2004 using rep-PCR and multilocus sequence typing. . J Clin Microbiol 50:, 3493–3500. [CrossRef][PubMed]
    [Google Scholar]
  16. Ho P. L., Ho A. Y., Chow K. H., Lai E. L., Ching P., Seto W. H.. ( 2010;). Epidemiology and clonality of multidrug-resistant Acinetobacter baumannii from a healthcare region in Hong Kong. . J Hosp Infect 74:, 358–364. [CrossRef][PubMed]
    [Google Scholar]
  17. Hou P. F., Chen X. Y., Yan G. F., Wang Y. P., Ying C. M.. ( 2012;). Study of the correlation of imipenem resistance with efflux pumps AdeABC, AdeIJK, AdeDE and AbeM in clinical isolates of Acinetobacter baumannii. . Chemotherapy 58:, 152–158. [CrossRef][PubMed]
    [Google Scholar]
  18. Howard A., O’Donoghue M., Feeney A., Sleator R. D.. ( 2012;). Acinetobacter baumannii: an emerging opportunistic pathogen. . Virulence 3:, 243–250. [CrossRef][PubMed]
    [Google Scholar]
  19. Liu Y. H., Kuo S. C., Lee Y. T., Chang I. C., Yang S. P., Chen T. L., Fung C. P.. ( 2012;). Amino acid substitutions of quinolone resistance determining regions in GyrA and ParC associated with quinolone resistance in Acinetobacter baumannii and Acinetobacter genomic species 13TU. . J Microbiol Immunol Infect 45:, 108–112. [CrossRef][PubMed]
    [Google Scholar]
  20. Ohashi M., Asai S., Umezawa K., Kenmochi I., Sasaki M., Iwashita H., Hasunuma Y., Ohshima T., Inokuchi S., Miyachi H.. ( 2013;). [ The transmission and its infection control of multidrug-resistant Acinetobacter baumannii in patients with severe burn injuries. ]. Jpn J Burn Injuries 39:, 69–75 (in Japanese).
    [Google Scholar]
  21. Peleg A. Y., Seifert H., Paterson D. L.. ( 2008;). Acinetobacter baumannii: emergence of a successful pathogen. . Clin Microbiol Rev 21:, 538–582. [CrossRef][PubMed]
    [Google Scholar]
  22. Rumbo C., Gato E., López M., Ruiz de Alegría C., Fernández-Cuenca F., Martínez-Martínez L., Vila J., Pachón J., Cisneros J. M.. & other authors ( 2013;). Contribution of efflux pumps, porins, and β-lactamases to multidrug resistance in clinical isolates of Acinetobacter baumannii. . Antimicrob Agents Chemother 57:, 5247–5257. [CrossRef][PubMed]
    [Google Scholar]
  23. Singh H., Thangaraj P., Chakrabarti A.. ( 2013;). Acinetobacter baumannii: a brief account of mechanisms of multidrug resistance and current and future therapeutic management. . J Clin Diagn Res 7:, 2602–2605.[PubMed]
    [Google Scholar]
  24. Srinivasan V. B., Rajamohan G., Pancholi P., Marcon M., Gebreyes W. A.. ( 2011;). Molecular cloning and functional characterization of two novel membrane fusion proteins in conferring antimicrobial resistance in Acinetobacter baumannii.. J Antimicrob Chemother 66:, 499–504. [CrossRef][PubMed]
    [Google Scholar]
  25. Suzuki M., Matsui M., Suzuki S., Rimbara E., Asai S., Miyachi H., Takata T., Hiraki Y., Kawano F., Shibayama K.. ( 2013;). Genome sequences of multidrug-resistant Acinetobacter baumannii strains from nosocomial outbreaks in Japan. . Genome Announc 1:, e00476-13. [CrossRef][PubMed]
    [Google Scholar]
  26. Turton J. F., Ward M. E., Woodford N., Kaufmann M. E., Pike R., Livermore D. M., Pitt T. L.. ( 2006;). The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. . FEMS Microbiol Lett 258:, 72–77. [CrossRef][PubMed]
    [Google Scholar]
  27. Vila J., Martí S., Sánchez-Céspedes J.. ( 2007;). Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. . J Antimicrob Chemother 59:, 1210–1215. [CrossRef][PubMed]
    [Google Scholar]
  28. Wendt C., Dietze B., Dietz E., Rüden H.. ( 1997;). Survival of Acinetobacter baumannii on dry surfaces. . J Clin Microbiol 35:, 1394–1397.[PubMed]
    [Google Scholar]
  29. Wisplinghoff H., Edmond M. B., Pfaller M. A., Jones R. N., Wenzel R. P., Seifert H.. ( 2000;). Nosocomial bloodstream infections caused by Acinetobacter species in United States hospitals: clinical features, molecular epidemiology, and antimicrobial susceptibility. . Clin Infect Dis 31:, 690–697. [CrossRef][PubMed]
    [Google Scholar]
  30. Woodford N., Ellington M. J., Coelho J. M., Turton J. F., Ward M. E., Brown S., Amyes S. G., Livermore D. M.. ( 2006;). Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp.. Int J Antimicrob Agents 27:, 351–353. [CrossRef][PubMed]
    [Google Scholar]
  31. Yamada Y., Suwabe A.. ( 2013;). Diverse carbapenem-resistance mechanisms in 16S rRNA methylase-producing Acinetobacter baumannii. . J Med Microbiol 62:, 618–622. [CrossRef][PubMed]
    [Google Scholar]
  32. Yamane K., Wachino J., Doi Y., Kurokawa H., Arakawa Y.. ( 2005;). Global spread of multiple aminoglycoside resistance genes. . Emerg Infect Dis 11:, 951–953. [CrossRef][PubMed]
    [Google Scholar]
  33. Zander E., Chmielarczyk A., Heczko P., Seifert H., Higgins P. G.. ( 2013;). Conversion of OXA-66 into OXA-82 in clinical Acinetobacter baumannii isolates and association with altered carbapenem susceptibility. . J Antimicrob Chemother 68:, 308–311. [CrossRef][PubMed]
    [Google Scholar]
  34. Zheng W., Yuan S., Li L.. ( 2013;). Analysis of hospital departmental distribution and antibiotic susceptibility of Acinetobacter isolated from sputum samples. . Am J Infect Control 41:, e73–e76. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.077503-0
Loading
/content/journal/jmm/10.1099/jmm.0.077503-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error