1887

Abstract

Carbapenemases are increasingly important antimicrobial resistance determinants. Little is known about the carbapenem resistance mechanisms in Sri Lanka. We examined 22 carbapenem-resistant from Sri Lanka to determine their β-lactam resistance mechanisms. The predominant resistance mechanisms we detected in this study were OXA-181, NDM-1 carbapenemases and extended-spectrum β-lactamase CTX-M-15. All isolates were then genotyped by pulsed-field gel electrophoresis, variable-number tandem repeat sequence analysis and multilocus sequence typing, and seven distinct genotypes were observed. Five OXA-181-positive isolates were genotypically related to an isolate of Indian origin. Multilocus sequence typing found that these related isolates belong to ST-14, which has been associated with dissemination of OXA-181 from the Indian subcontinent. Other genotypes we discovered were ST-147 and ST-340, also associated with intercontinental spread of carbapenemases of suspected subcontinental origin. The major porin genes and from these isolates had insertions, deletions and substitutions. Some of these were exclusive to strains within single pulsotypes. We detected one 36 variant, ins AA134-135GD, in six ST-14- and six ST-147, -positive isolates. This porin mutation was an independent predictor of high-level meropenem resistance in our entire Sri Lankan isolate collection ( = 0.0030). Analysis of the Sri Lankan ST-14 and ST-147 ins AA134-135GD-positive isolates found ST-14 was more resistant to meropenem than other isolates (mean MIC: 32±0 µg ml and 20±9.47 µg ml, respectively,  = 0.0277). The likely international transmission of these carbapenem resistance determinants highlights the need for regional collaboration and prospective surveillance of carbapenem-resistant .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.076760-0
2014-08-01
2019-08-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/8/1087.html?itemId=/content/journal/jmm/10.1099/jmm.0.076760-0&mimeType=html&fmt=ahah

References

  1. Albertí S. , Rodríquez-Quiñones F. , Schirmer T. , Rummel G. , Tomás J. M. , Rosenbusch J. P. , Benedí V. J. . ( 1995; ). A porin from Klebsiella pneumoniae: sequence homology, three-dimensional model, and complement binding. . Infect Immun 63:, 903–910.[PubMed]
    [Google Scholar]
  2. Balm M. N. D. , Ngan G. , Jureen R. , Lin R. T. P. , Teo J. W. P. . ( 2013; ). OXA-181-producing Klebsiella pneumoniae establishing in Singapore. . BMC Infect Dis 13:, 58. [CrossRef] [PubMed]
    [Google Scholar]
  3. Ben-Ami R. , Rodríguez-Baño J. , Arslan H. , Pitout J. D. D. , Quentin C. , Calbo E. S. , Azap O. K. , Arpin C. , Pascual A. et al. ( 2009; ). A multinational survey of risk factors for infection with extended-spectrum β-lactamase-producing Enterobacteriaceae in nonhospitalized patients. . Clin Infect Dis 49:, 682–690. [CrossRef] [PubMed]
    [Google Scholar]
  4. Benenson S. , Temper V. , Cohen M. J. , Schwartz C. , Hidalgo-Grass C. , Block C. . ( 2011; ). Imipenem disc for detection of KPC carbapenemase-producing Enterobacteriaceae in clinical practice. . J Clin Microbiol 49:, 1617–1620. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bulik C. C. , Fauntleroy K. A. , Jenkins S. G. , Abuali M. , LaBombardi V. J. , Nicolau D. P. , Kuti J. L. . ( 2010; ). Comparison of meropenem MICs and susceptibilities for carbapenemase-producing Klebsiella pneumoniae isolates by various testing methods. . J Clin Microbiol 48:, 2402–2406. [CrossRef] [PubMed]
    [Google Scholar]
  6. Castanheira M. , Deshpande L. M. , Mathai D. , Bell J. M. , Jones R. N. , Mendes R. E. . ( 2011; ). Early dissemination of NDM-1- and OXA-181-producing Enterobacteriaceae in Indian hospitals: report from the SENTRY Antimicrobial Surveillance Program, 2006–2007. . Antimicrob Agents Chemother 55:, 1274–1278. [CrossRef] [PubMed]
    [Google Scholar]
  7. Clancy C. J. , Chen L. , Hong J. H. , Cheng S. , Hao B. , Shields R. K. , Farrell A. N. , Doi Y. , Zhao Y. et al. ( 2013; ). Mutations of the ompK36 porin gene and promoter impact responses of sequence type 258, KPC-2-producing Klebsiella pneumoniae strains to doripenem and doripenem-colistin. . Antimicrob Agents Chemother 57:, 5258–5265. [CrossRef] [PubMed]
    [Google Scholar]
  8. Cuzon G. , Ouanich J. , Gondret R. , Naas T. , Nordmann P. . ( 2011; ). Outbreak of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in France. . Antimicrob Agents Chemother 55:, 2420–2423. [CrossRef] [PubMed]
    [Google Scholar]
  9. Dallenne C. , Da Costa A. , Decré D. , Favier C. , Arlet G. . ( 2010; ). Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae . . J Antimicrob Chemother 65:, 490–495. [CrossRef] [PubMed]
    [Google Scholar]
  10. Decre D. , Birgand G. , Geneste D. , Maury E. , Petit J. C. , Barbut F. , Arlet G. . ( 2010; ). Possible importation and subsequent cross-transmission of OXA-48-producing Klebsiella pneumoniae, France, 2010. . Euro Surveill 15:, pii = 19718.[PubMed]
    [Google Scholar]
  11. Diancourt L. , Passet V. , Verhoef J. , Grimont P. A. , Brisse S. . ( 2005; ). Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. . J Clin Microbiol 43:, 4178–4182. [CrossRef] [PubMed]
    [Google Scholar]
  12. Doumith M. , Ellington M. W. , Livermore D. M. , Woodford N. . ( 2009; ). Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. . J Antimicrob Chemother 63:, 659–667.[PubMed] [CrossRef]
    [Google Scholar]
  13. Fang H. , Ataker F. , Hedin G. , Dornbusch K. . ( 2008; ). Molecular epidemiology of extended-spectrum β-lactamases among Escherichia coli isolates collected in a Swedish hospital and its associated health care facilities from 2001 to 2006. . J Clin Microbiol 46:, 707–712. [CrossRef] [PubMed]
    [Google Scholar]
  14. García-Fernández A. , Miriagou V. , Papagiannitsis C. C. , Giordano A. , Venditti M. , Mancini C. , Carattoli A. . ( 2010; ). An ertapenem-resistant extended-spectrum-β-lactamase-producing Klebsiella pneumoniae clone carries a novel OmpK36 porin variant. . Antimicrob Agents Chemother 54:, 4178–4184. [CrossRef] [PubMed]
    [Google Scholar]
  15. Landman D. , Bratu S. , Quale J. . ( 2009; ). Contribution of OmpK36 to carbapenem susceptibility in KPC-producing Klebsiella pneumoniae. . J Med Microbiol 58:, 1303–1308. [CrossRef] [PubMed]
    [Google Scholar]
  16. Lee K. , Chong Y. , Shin H. B. , Kim Y. A. , Yong D. , Yum J. H. . ( 2001; ). Modified Hodge and EDTA-disk synergy tests to screen metallo-β-lactamase-producing strains of Pseudomonas and Acinetobacter species. . Clin Microbiol Infect 7:, 88–91. [CrossRef] [PubMed]
    [Google Scholar]
  17. Maslow J. N. , Slutsky A. M. , Arbeit R. D. . ( 1993; ). Application of pulsed- field gel electrophoresis to molecular epidemiology. . In Diagnostic molecular microbiology: principles and applications, pp. 563–572. Edited by Persing D. H. , Smith T. F. , Tenover F. C. , White T. J. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  18. Muñoz P. , Blanco J. R. , Rodríguez-Creixéms M. , García E. , Delcan J. L. , Bouza E. . ( 2001; ). Bloodstream infections after invasive nonsurgical cardiologic procedures. . Arch Intern Med 161:, 2110–2115. [CrossRef] [PubMed]
    [Google Scholar]
  19. Nikaido H. . ( 2003; ). Molecular basis of bacterial outer membrane permeability revisited. . Microbiol Mol Biol Rev 67:, 593–656. [CrossRef] [PubMed]
    [Google Scholar]
  20. Peirano G. , Pillai D. R. , Pitondo-Silva A. , Richardson D. , Pitout J. D. D. . ( 2011; ). The characteristics of NDM-producing Klebsiella pneumoniae from Canada. . Diagn Microbiol Infect Dis 71:, 106–109. [CrossRef] [PubMed]
    [Google Scholar]
  21. Pérez-Pérez F. J. , Hanson N. D. . ( 2002; ). Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. . J Clin Microbiol 40:, 2153–2162. [CrossRef] [PubMed]
    [Google Scholar]
  22. Poirel L. , Hombrouck-Alet C. , Freneaux C. , Bernabeu S. , Nordmann P. . ( 2010; ). Global spread of New Delhi metallo-β-lactamase 1. . Lancet Infect Dis 10:, 832. [CrossRef] [PubMed]
    [Google Scholar]
  23. Poirel L. , Potron A. , Nordmann P. . ( 2012; ). OXA-48-like carbapenemases: the phantom menace. . J Antimicrob Chemother 67:, 1597–1606. [CrossRef] [PubMed]
    [Google Scholar]
  24. Potron A. , Nordmann P. , Rondinaud E. , Jaureguy F. , Poirel L. . ( 2013; ). A mosaic transposon encoding OXA-48 and CTX-M-15: towards pan-resistance. . J Antimicrob Chemother 68:, 476–477. [CrossRef] [PubMed]
    [Google Scholar]
  25. Queenan A. M. , Bush K. . ( 2007; ). Carbapenemases: the versatile β-lactamases. . Clin Microbiol Rev 20:, 440–458. [CrossRef] [PubMed]
    [Google Scholar]
  26. Senda K. K. , Arakawa Y. Y. , Ichiyama S. S. , Nakashima K. K. , Ito H. H. , Ohsuka S. S. , Shimokata K. K. , Kato N. N. , Ohta M. M. . ( 1996; ). PCR detection of metallo-β-lactamase gene (blaIMP) in gram-negative rods resistant to broad-spectrum β-lactams. . J Clin Microbiol 34:, 2909–2913.[PubMed]
    [Google Scholar]
  27. Toubes E. , Singh K. , Yin D. , Lyu R. , Glick N. , Russell L. , Mohapatra S. , Saghal N. , Weinstein R. A. , Trenholme G. . ( 2003; ). Risk factors for antibiotic-resistant infection and treatment outcomes among hospitalized patients transferred from long-term care facilities: does antimicrobial choice make a difference?. Clin Infect Dis 36:, 724–730. [CrossRef] [PubMed]
    [Google Scholar]
  28. Tsakris A. A. , Pournaras S. S. , Woodford N. N. , Palepou M. F. M. , Babini G. S. G. , Douboyas J. J. , Livermore D. M. D. . ( 2000; ). Outbreak of infections caused by Pseudomonas aeruginosa producing VIM-1 carbapenemase in Greece. . J Clin Microbiol 38:, 1290–1292.[PubMed]
    [Google Scholar]
  29. Turton J. F. , Perry C. , Elgohari S. , Hampton C. V. . ( 2010; ). PCR characterization and typing of Klebsiella pneumoniae using capsular type-specific, variable number tandem repeat and virulence gene targets. . J Med Microbiol 59:, 541–547. [CrossRef] [PubMed]
    [Google Scholar]
  30. Watanabe M. M. , Iyobe S. S. , Inoue M. M. , Mitsuhashi S. S. . ( 1991; ). Transferable imipenem resistance in Pseudomonas aeruginosa. . Antimicrob Agents Chemother 35:, 147–151. [CrossRef] [PubMed]
    [Google Scholar]
  31. Wiegand I. , Hilpert K. , Hancock R. E. W. . ( 2008; ). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. . Nat Protoc 3:, 163–175. [CrossRef] [PubMed]
    [Google Scholar]
  32. Williamson D. A. , Heffernan H. , Sidjabat H. , Roberts S. A. , Paterson D. L. , Smith M. , Freeman J. T. . ( 2011; ). Intercontinental transfer of OXA-181-producing Klebsiella pneumoniae into New Zealand. . J Antimicrob Chemother 66:, 2888–2890. [CrossRef] [PubMed]
    [Google Scholar]
  33. Yong D. , Toleman M. A. , Giske C. G. , Cho H. S. , Sundman K. , Lee K. , Walsh T. R. . ( 2009; ). Characterization of a new metallo-β-lactamase gene, bla NDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. . Antimicrob Agents Chemother 53:, 5046–5054. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.076760-0
Loading
/content/journal/jmm/10.1099/jmm.0.076760-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error