1887

Abstract

From 2007 to 2009, we collected a total of 83 bacteraemic isolates of with reduced susceptibility or resistance to third-generation cephalosporins (TGCs). Isolates were genotyped by PFGE and multilocus sequence typing (MLST). The PFGE patterns revealed two highly correlated clusters (cluster E: nine isolates; cluster G: 22 isolates) associated with this prolonged clonal spreading. Compared with cluster E isolates, cluster G isolates were significantly more likely to harbour (<0.05), and most of these isolates were isolated during a later year than cluster E isolates (<0.05). By MLST analysis, 94 % of cluster E and G isolates (29/31) were ST68. Although no time or space clustering could be identified by the conventional hospital-acquired infection monitoring system, cases caused by cluster E and G isolates were significantly associated with having stayed in our hospital’s respiratory care ward (<0.05). Isolates obtained from patients who had stayed in the respiratory care ward had a significantly higher rate of and positivity, and were more likely to belong to ST68/S68-like (all <0.05). To our knowledge, this is the first report of prolonged clonal spreading caused by ST68 associated with a stay in a long-term care facility. Using epidemiological investigations and PFGE and MLST analyses, we have identified long-term clonal spreading caused by ST68, with extra antimicrobial-resistance genes possibly acquired during the prolonged spreading period.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.075937-0
2014-11-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/11/1531.html?itemId=/content/journal/jmm/10.1099/jmm.0.075937-0&mimeType=html&fmt=ahah

References

  1. Al-Hasan M. N. , Lahr B. D. , Eckel-Passow J. E. , Baddour L. M. . ( 2009; ). Antimicrobial resistance trends of Escherichia coli bloodstream isolates: a population-based study, 1998-2007. . J Antimicrob Chemother 64:, 169–174. [CrossRef] [PubMed]
    [Google Scholar]
  2. American Thoracic Society Infectious Diseases Society of America ( 2005; ). Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. . Am J Respir Crit Care Med 171:, 388–416. [CrossRef] [PubMed]
    [Google Scholar]
  3. Arvand M. , Moser V. , Pfeifer Y. . ( 2013; ). Prevalence of extended-spectrum-β-lactamase-producing Escherichia coli and spread of the epidemic clonal lineage ST131 in nursing homes in Hesse, Germany. . J Antimicrob Chemother 68:, 2686–2688. [CrossRef] [PubMed]
    [Google Scholar]
  4. CLSI ( 2009; ). Performance Standards for Antimicrobial Susceptibility Testing; 19th Informational Supplement M100-S19. . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  5. CLSI ( 2010; ). Performance Standards for Antimicrobial Susceptibility Testing; 20th Informational Supplement M100-S20. . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  6. Denis C. , Poirel L. , Carricajo A. , Grattard F. , Fascia P. , Verhoeven P. , Gay P. , Nuti C. , Nordmann P. . & other authors ( 2012; ). Nosocomial transmission of NDM-1-producing Escherichia coli within a non-endemic area in France. . Clin Microbiol Infect 18:, E128–E130. [CrossRef] [PubMed]
    [Google Scholar]
  7. Dhanji H. , Doumith M. , Rooney P. J. , O’Leary M. C. , Loughrey A. C. , Hope R. , Woodford N. , Livermore D. M. . ( 2011; ). Molecular epidemiology of fluoroquinolone-resistant ST131 Escherichia coli producing CTX-M extended-spectrum β-lactamases in nursing homes in Belfast, UK. . J Antimicrob Chemother 66:, 297–303. [CrossRef] [PubMed]
    [Google Scholar]
  8. Friedman N. D. , Kaye K. S. , Stout J. E. , McGarry S. A. , Trivette S. L. , Briggs J. P. , Lamm W. , Clark C. , MacFarquhar J. . & other authors ( 2002; ). Health care–associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. . Ann Intern Med 137:, 791–797. [CrossRef] [PubMed]
    [Google Scholar]
  9. Garner J. S. , Jarvis W. R. , Emori T. G. , Horan T. C. , Hughes J. M. . ( 1988; ). CDC definitions for nosocomial infections, 1988. . Am J Infect Control 16:, 128–140. [CrossRef] [PubMed]
    [Google Scholar]
  10. Gautom R. K. . ( 1997; ). Rapid pulsed-field gel electrophoresis protocol for typing of Escherichia coli O157:H7 and other Gram-negative organisms in 1 day. . J Clin Microbiol 35:, 2977–2980.[PubMed]
    [Google Scholar]
  11. Hawkey P. M. , Jones A. M. . ( 2009; ). The changing epidemiology of resistance. . J Antimicrob Chemother 64: (Suppl 1), i3–i10. [CrossRef] [PubMed]
    [Google Scholar]
  12. Hawser S. P. , Bouchillon S. K. , Hoban D. J. , Badal R. E. , Hsueh P. R. , Paterson D. L. . ( 2009; ). Emergence of high levels of extended-spectrum-β-lactamase-producing Gram-negative bacilli in the Asia-Pacific region: data from the Study for Monitoring Antimicrobial Resistance Trends (SMART) program, 2007. . Antimicrob Agents Chemother 53:, 3280–3284. [CrossRef] [PubMed]
    [Google Scholar]
  13. Hilty M. , Betsch B. Y. , Bögli-Stuber K. , Heiniger N. , Stadler M. , Küffer M. , Kronenberg A. , Rohrer C. , Aebi S. . & other authors ( 2012; ). Transmission dynamics of extended-spectrum β-lactamase-producing Enterobacteriaceae in the tertiary care hospital and the household setting. . Clin Infect Dis 55:, 967–975. [CrossRef] [PubMed]
    [Google Scholar]
  14. Ho P. L. , Yeung M. K. , Lo W. U. , Tse H. , Li Z. , Lai E. L. , Chow K. H. , To K. K. , Yam W. C. . ( 2012; ). Predominance of pHK01-like incompatibility group FII plasmids encoding CTX-M-14 among extended-spectrum β-lactamase-producing Escherichia coli in Hong Kong, 1996-2008. . Diagn Microbiol Infect Dis 73:, 182–186. [CrossRef] [PubMed]
    [Google Scholar]
  15. Jones G. L. , Warren R. E. , Skidmore S. J. , Davies V. A. , Gibreel T. , Upton M. . ( 2008; ). Prevalence and distribution of plasmid-mediated quinolone resistance genes in clinical isolates of Escherichia coli lacking extended-spectrum β-lactamases. . J Antimicrob Chemother 62:, 1245–1251. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kim H. B. , Park C. H. , Kim C. J. , Kim E. C. , Jacoby G. A. , Hooper D. C. . ( 2009; ). Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. . Antimicrob Agents Chemother 53:, 639–645. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kuo L. C. , Yu C. J. , Kuo M. L. , Chen W. N. , Chang C. K. , Lin H. I. , Chen C. C. , Lu M. C. , Lin C. H. . & other authors ( 2008; ). Antimicrobial resistance of bacterial isolates from respiratory care wards in Taiwan: a horizontal surveillance study. . Int J Antimicrob Agents 31:, 420–426. [CrossRef] [PubMed]
    [Google Scholar]
  18. Lin C. J. , Siu L. K. , Ma L. , Chang Y. T. , Lu P. L. . ( 2012; ). Molecular epidemiology of ciprofloxacin-resistant extended-spectrum β-lactamase-producing Klebsiella pneumoniae in Taiwan. . Microb Drug Resist 18:, 52–58. [CrossRef] [PubMed]
    [Google Scholar]
  19. Liu K. S. , Wang Y. T. , Lai Y. C. , Yu S. F. , Huang S. J. , Huang H. J. , Lu M. C. , Hsueh P. R. . ( 2011; ). Antimicrobial resistance of bacterial isolates from respiratory care wards in Taiwan: a horizontal surveillance study comparison of the characteristics of nosocomial infection and antimicrobial-resistant bacteria in adult intensive care units and two respiratory care facilities for mechanically ventilated patients at a tertiary care centre in Taiwan. . Int J Antimicrob Agents 37:, 10–15. [CrossRef] [PubMed]
    [Google Scholar]
  20. Magiorakos A. P. , Srinivasan A. , Carey R. B. , Carmeli Y. , Falagas M. E. , Giske C. G. , Harbarth S. , Hindler J. F. , Kahlmeter G. , Olsson-Liljequist B. . & other authors ( 2012; ). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. . Clin Microbiol Infect 18:, 268–281.[CrossRef]
    [Google Scholar]
  21. Monstein H. J. , Ostholm-Balkhed A. , Nilsson M. V. , Nilsson M. , Dornbusch K. , Nilsson L. E. . ( 2007; ). Multiplex PCR amplification assay for the detection of bla SHV, bla TEM and bla CTX-M genes in Enterobacteriaceae . . APMIS 115:, 1400–1408. [CrossRef] [PubMed]
    [Google Scholar]
  22. Naseer U. , Natås O. B. , Haldorsen B. C. , Bue B. , Grundt H. , Walsh T. R. , Sundsfjord A. . ( 2007; ). Nosocomial outbreak of CTX-M-15-producing E. coli in Norway. . APMIS 115:, 120–126. [CrossRef] [PubMed]
    [Google Scholar]
  23. Neonakis I. , Gikas A. , Scoulica E. , Manios A. , Georgiladakis A. , Tselentis Y. . ( 2003; ). Evolution of aminoglycoside resistance phenotypes of four Gram-negative bacteria: an 8-year survey in a University Hospital in Greece. . Int J Antimicrob Agents 22:, 526–531. [CrossRef] [PubMed]
    [Google Scholar]
  24. Pai H. , Kim M. R. , Seo M. R. , Choi T. Y. , Oh S. H. . ( 2006; ). A nosocomial outbreak of Escherichia coli producing CTX-M-15 and OXA-30 β-lactamase. . Infect Control Hosp Epidemiol 27:, 312–314. [CrossRef] [PubMed]
    [Google Scholar]
  25. Pérez-Pérez F. J. , Hanson N. D. . ( 2002; ). Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. . J Clin Microbiol 40:, 2153–2162. [CrossRef] [PubMed]
    [Google Scholar]
  26. Peters T. M. . ( 2009; ). Pulsed-field gel electrophoresis for molecular epidemiology of food pathogens. . Methods Mol Biol 551:, 59–70. [CrossRef] [PubMed]
    [Google Scholar]
  27. Robicsek A. , Strahilevitz J. , Jacoby G. A. , Macielag M. , Abbanat D. , Park C. H. , Bush K. , Hooper D. C. . ( 2006; ). Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. . Nat Med 12:, 83–88. [CrossRef] [PubMed]
    [Google Scholar]
  28. Rodríguez-Baño J. , Navarro M. D. , Romero L. , Muniain M. A. , de Cueto M. , Ríos M. J. , Hernández J. R. , Pascual A. . ( 2006; ). Bacteremia due to extended-spectrum β-lactamase-producing Escherichia coli in the CTX-M era: a new clinical challenge. . Clin Infect Dis 43:, 1407–1414. [CrossRef] [PubMed]
    [Google Scholar]
  29. Tenover F. C. , Arbeit R. D. , Goering R. V. , Mickelsen P. A. , Murray B. E. , Persing D. H. , Swaminathan B. . ( 1995; ). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. . J Clin Microbiol 33:, 2233–2239.[PubMed]
    [Google Scholar]
  30. Thomson K. S. . ( 2010; ). Extended-spectrum-β-lactamase, AmpC, and carbapenemase issues. . J Clin Microbiol 48:, 1019–1025. [CrossRef] [PubMed]
    [Google Scholar]
  31. Tsui K. , Wong S. S. , Lin L. C. , Tsai C. R. , Chen L. C. , Huang C. H. . ( 2012; ). Laboratory identification, risk factors, and clinical outcomes of patients with bacteremia due to Escherichia coli and Klebsiella pneumoniae producing extended-spectrum and AmpC type β-lactamases. . J Microbiol Immunol Infect 45:, 193–199. [CrossRef] [PubMed]
    [Google Scholar]
  32. van der Donk C. F. , Schols J. M. , Driessen C. J. , Hagenouw R. G. , Meulendijks A. , Stobberingh E. E. . ( 2013; ). Prevalence and spread of multidrug resistant Escherichia coli isolates among nursing home residents in the southern part of The Netherlands. . J Am Med Dir Assoc 14:, 199–203. [CrossRef] [PubMed]
    [Google Scholar]
  33. Wirth T. , Falush D. , Lan R. , Colles F. , Mensa P. , Wieler L. H. , Karch H. , Reeves P. R. , Maiden M. C. . & other authors ( 2006; ). Sex and virulence in Escherichia coli: an evolutionary perspective. . Mol Microbiol 60:, 1136–1151. [CrossRef] [PubMed]
    [Google Scholar]
  34. Woodford N. , Fagan E. J. , Ellington M. J. . ( 2006; ). Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum (β)-lactamases. . J Antimicrob Chemother 57:, 154–155. [CrossRef] [PubMed]
    [Google Scholar]
  35. Yan J. J. , Ko W. C. , Tsai S. H. , Wu H. M. , Jin Y. T. , Wu J. J. . ( 2000; ). Dissemination of CTX-M-3 and CMY-2 β-lactamases among clinical isolates of Escherichia coli in southern Taiwan. . J Clin Microbiol 38:, 4320–4325.[PubMed]
    [Google Scholar]
  36. Yan J. J. , Hsueh P. R. , Lu J. J. , Chang F. Y. , Shyr J. M. , Wan J. H. , Liu Y. C. , Chuang Y. C. , Yang Y. C. . & other authors ( 2006; ). Extended-spectrum β-lactamases and plasmid-mediated AmpC enzymes among clinical isolates of Escherichia coli and Klebsiella pneumoniae from seven medical centers in Taiwan. . Antimicrob Agents Chemother 50:, 1861–1864. [CrossRef] [PubMed]
    [Google Scholar]
  37. Yu W. L. , Winokur P. L. , Von Stein D. L. , Pfaller M. A. , Wang J. H. , Jones R. N. . ( 2002; ). First description of Klebsiella pneumoniae harboring CTX-M β-lactamases (CTX-M-14 and CTX-M-3) in Taiwan. . Antimicrob Agents Chemother 46:, 1098–1100. [CrossRef] [PubMed]
    [Google Scholar]
  38. Zong Z. , Partridge S. R. , Thomas L. , Iredell J. R. . ( 2008; ). Dominance of bla CTX-M within an Australian extended-spectrum β-lactamase gene pool. . Antimicrob Agents Chemother 52:, 4198–4202. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.075937-0
Loading
/content/journal/jmm/10.1099/jmm.0.075937-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error