1887

Abstract

infection (CDI) is a prevalent nosocomial and increasingly community-acquired problem. Little is known about the productive cellular response in patients. We used flow cytometry to define inflammatory (Th1 and Th17) and regulatory [Foxp3 T-regulatory (Treg)] cells present in circulating peripheral blood mononuclear cells (PBMC) from CDI patients. We consented 67 inpatients that tested either positive or negative for CDI and 16 healthy controls and compared their PBMC phenotypes. PBMC were collected, isolated, and stained for CD3, CD8 and either IL17 (Th17), IFN-γ (Th1) or Foxp3 (Treg) and analysed using flow cytometry. Twenty thousand events were collected in the lymphocyte gate (gate 1) and T-cell phenotypes were defined. CDI patients who clear the primary initial infection have greater numbers of non-CD3 PBMC. CDI patients who develop recurrence of CDI have a greater percentage of CD3CD8, CD3CD4Foxp3 and fewer low granular CD3Foxp3 PBMC. These patients have greater numbers of IFN-γ-producing lymphocytes, as well as PBMC phenotypes represented by increased IFN-γ- and IL17-co-expressing CD4CD3. This initial pro-inflammatory phenotype decreases with repeated recurrence, demonstrating importance of timing of sample collection and history of symptoms. Patients with a history of recurrence had increased Foxp3CD3CD4 and IL17CD3CD4 populations. Hence, CDI recurrence is hallmarked by greater numbers of circulating CD3 lymphocytes skewed towards a Th1/Th17 inflammatory population as well as possible immune plasticity (Th17/Treg).

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.075382-0
2014-10-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/10/1260.html?itemId=/content/journal/jmm/10.1099/jmm.0.075382-0&mimeType=html&fmt=ahah

References

  1. Adlerberth I., Huang H., Lindberg E., Åberg N., Hesselmar B., Saalman R., Nord C. E., Wold A. E., Weintraub A.. ( 2014;). Toxin-producing Clostridium difficile strains as long-term gut colonizers in healthy infants. . J Clin Microbiol 52:, 173–179. [CrossRef][PubMed]
    [Google Scholar]
  2. Atarashi K., Tanoue T., Shima T., Imaoka A., Kuwahara T., Momose Y., Cheng G., Yamasaki S., Saito T.. & other authors ( 2011;). Induction of colonic regulatory T cells by indigenous Clostridium species. . Science 331:, 337–341. [CrossRef][PubMed]
    [Google Scholar]
  3. Ausiello C. M., Cerquetti M., Fedele G., Spensieri F., Palazzo R., Nasso M., Frezza S., Mastrantonio P.. ( 2006;). Surface layer proteins from Clostridium difficile induce inflammatory and regulatory cytokines in human monocytes and dendritic cells. . Microbes Infect 8:, 2640–2646. [CrossRef][PubMed]
    [Google Scholar]
  4. Berthelot J. M., Jamin C., Amrouche K., Le Goff B., Maugars Y., Youinou P.. ( 2013;). Regulatory B cells play a key role in immune system balance. . Joint Bone Spine 80:, 18–22. [CrossRef][PubMed]
    [Google Scholar]
  5. Bianco M., Fedele G., Quattrini A., Spigaglia P., Barbanti F., Mastrantonio P., Ausiello C. M.. ( 2011;). Immunomodulatory activities of surface-layer proteins obtained from epidemic and hypervirulent Clostridium difficile strains. . J Med Microbiol 60:, 1162–1167. [CrossRef][PubMed]
    [Google Scholar]
  6. Bulusu M., Narayan S., Shetler K., Triadafilopoulos G.. ( 2000;). Leukocytosis as a harbinger and surrogate marker of Clostridium difficile infection in hospitalized patients with diarrhea. . Am J Gastroenterol 95:, 3137–3141. [CrossRef][PubMed]
    [Google Scholar]
  7. CDC ( 2013;). Antibiotic resistance threats in the United States. . Available at: http://www.cdc.gov/drugresistance/threat-report-2013 [accessed 3 December 2013].
  8. Chiba T., Seno H.. ( 2011;). Indigenous Clostridium species regulate systemic immune responses by induction of colonic regulatory T cells. . Gastroenterology 141:, 1114–1116. [CrossRef][PubMed]
    [Google Scholar]
  9. Cosmi L., Maggi L., Santarlasci V., Liotta F., Annunziato F.. ( 2014;). T helper cells plasticity in inflammation. . Cytometry A 85:, 36–42. [CrossRef][PubMed]
    [Google Scholar]
  10. El Feghaly R. E., Stauber J. L., Deych E., Gonzalez C., Tarr P. I., Haslam D. B.. ( 2013a;). Markers of intestinal inflammation, not bacterial burden, correlate with clinical outcomes in Clostridium difficile infection. . Clin Infect Dis 56:, 1713–1721. [CrossRef][PubMed]
    [Google Scholar]
  11. El Feghaly R. E., Stauber J. L., Tarr P. I., Haslam D. B.. ( 2013b;). Intestinal inflammatory biomarkers and outcome in pediatric Clostridium difficile infections. . J Pediatr 163:, 1697–1704, e2. [CrossRef][PubMed]
    [Google Scholar]
  12. Farrar M. A., Schreiber R. D.. ( 1993;). The molecular cell biology of interferon-γ and its receptor. . Annu Rev Immunol 11:, 571–611. [CrossRef][PubMed]
    [Google Scholar]
  13. Foglia G., Shah S., Luxemburger C., Pietrobon P. J. F.. ( 2012;). Clostridium difficile: development of a novel candidate vaccine. . Vaccine 30:, 4307–4309. [CrossRef][PubMed]
    [Google Scholar]
  14. Gaboriau-Routhiau V., Rakotobe S., Lécuyer E., Mulder I., Lan A., Bridonneau C., Rochet V., Pisi A., De Paepe M.. & other authors ( 2009;). The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. . Immunity 31:, 677–689. [CrossRef][PubMed]
    [Google Scholar]
  15. Gopal R., Rangel-Moreno J., Fallert Junecko B. A., Mallon D. J., Chen K., Pociask D. A., Connell T. D., Reinhart T. A., Alcorn J. F.. & other authors ( 2014;). Mucosal pre-exposure to Th17-inducing adjuvants exacerbates pathology after influenza infection. . Am J Pathol 184:, 55–63. [CrossRef][PubMed]
    [Google Scholar]
  16. Ishida Y., Maegawa T., Kondo T., Kimura A., Iwakura Y., Nakamura S., Mukaida N.. ( 2004;). Essential involvement of IFN-γ in Clostridium difficile toxin A-induced enteritis. . J Immunol 172:, 3018–3025. [CrossRef][PubMed]
    [Google Scholar]
  17. Jafari N. V., Kuehne S. A., Bryant C. E., Elawad M., Wren B. W., Minton N. P., Allan E., Bajaj-Elliott M.. ( 2013;). Clostridium difficile modulates host innate immunity via toxin-independent and dependent mechanism(s). . PLoS ONE 8:, e69846. [CrossRef][PubMed]
    [Google Scholar]
  18. Kelly C. P.. ( 2012;). Can we identify patients at high risk of recurrent Clostridium difficile infection?. Clin Microbiol Infect 18: (Suppl. 6), 21–27. [CrossRef][PubMed]
    [Google Scholar]
  19. Kelly C. P., Kyne L.. ( 2011;). The host immune response to Clostridium difficile. . J Med Microbiol 60:, 1070–1079. [CrossRef][PubMed]
    [Google Scholar]
  20. Koon H. W., Shih D. Q., Hing T. C., Yoo J. H., Ho S., Chen X., Kelly C. P., Targan S. R., Pothoulakis C.. ( 2013;). Human monoclonal antibodies against Clostridium difficile toxins A and B inhibit inflammatory and histologic responses to the toxins in human colon and peripheral blood monocytes. . Antimicrob Agents Chemother 57:, 3214–3223. [CrossRef][PubMed]
    [Google Scholar]
  21. Lavergne V., Beauséjour Y., Pichette G., Ghannoum M., Su S. H.. ( 2013;). Lymphopenia as a novel marker of Clostridium difficile infection recurrence. . J Infect 66:, 129–135. [CrossRef][PubMed]
    [Google Scholar]
  22. Lo Vecchio A., Zacur G. M.. ( 2012;). Clostridium difficile infection: an update on epidemiology, risk factors, and therapeutic options. . Curr Opin Gastroenterol 28:, 1–9. [CrossRef][PubMed]
    [Google Scholar]
  23. Lowy I., Molrine D. C., Leav B. A., Blair B. M., Baxter R., Gerding D. N., Nichol G., Thomas W. D. Jr, Leney M.. & other authors ( 2010;). Treatment with monoclonal antibodies against Clostridium difficile toxins. . N Engl J Med 362:, 197–205. [CrossRef][PubMed]
    [Google Scholar]
  24. Madan R., Petri W. A. Jr. ( 2012;). Immune responses to Clostridium difficile infection. . Trends Mol Med 18:, 658–666. [CrossRef][PubMed]
    [Google Scholar]
  25. Mahida Y. R., Galvin A., Makh S., Hyde S., Sanfilippo L., Borriello S. P., Sewell H. F.. ( 1998;). Effect of Clostridium difficile toxin A on human colonic lamina propria cells: early loss of macrophages followed by T-cell apoptosis. . Infect Immun 66:, 5462–5469.[PubMed]
    [Google Scholar]
  26. Malmhäll C., Bossios A., Rådinger M., Sjöstrand M., Lu Y., Lundbäck B., Lötvall J.. ( 2012;). Immunophenotyping of circulating T helper cells argues for multiple functions and plasticity of T cells in vivo in humans possible role in asthma. . PLoS ONE 7:, e40012. [CrossRef][PubMed]
    [Google Scholar]
  27. Mao J. H., Chen Z. M., Tang Y. M., Liang L., Du L. Z., Zhang Y.. ( 2004;). [Regulation of CD3, CD4 and CD8 expressions on PMA-activated human peripheral T cells]. . Zhejiang Da Xue Xue Bao Yi Xue Ban 33:, 155–159 (in Chinese).[PubMed]
    [Google Scholar]
  28. Martin J., Mawer D., Wilcox M. H.. ( 2013;). Clostridium difficile: biological therapies. . Curr Opin Infect Dis 26:, 454–460.[PubMed]
    [Google Scholar]
  29. Monaghan T. M., Robins A., Knox A., Sewell H. F., Mahida Y. R.. ( 2013;). Circulating antibody and memory B-cell responses to C. difficile toxins A and B in patients with C. difficile-associated diarrhoea, inflammatory bowel disease and cystic fibrosis. . PLoS ONE 8:, e74452. [CrossRef][PubMed]
    [Google Scholar]
  30. Noh J., Choi W. S., Noh G., Lee J. H.. ( 2010;). Presence of Foxp3-expressing CD19(+)CD5(+) B cells in human peripheral blood mononuclear cells: human CD19(+)CD5(+)Foxp3(+) regulatory B cell (Breg). . Immune Netw 10:, 247–249. [CrossRef][PubMed]
    [Google Scholar]
  31. Omoyinmi E., Hamaoui R., Pesenacker A., Nistala K., Moncrieffe H., Ursu S., Wedderburn L. R., Woo P.. ( 2012;). Th1 and Th17 cell subpopulations are enriched in the peripheral blood of patients with systemic juvenile idiopathic arthritis. . Rheumatology (Oxford) 51:, 1881–1886. [CrossRef][PubMed]
    [Google Scholar]
  32. Péchiné S., Janoir C., Boureau H., Gleizes A., Tsapis N., Hoys S., Fattal E., Collignon A.. ( 2007;). Diminished intestinal colonization by Clostridium difficile and immune response in mice after mucosal immunization with surface proteins of Clostridium difficile. . Vaccine 25:, 3946–3954. [CrossRef][PubMed]
    [Google Scholar]
  33. Pelchen-Matthews A., Parsons I. J., Marsh M.. ( 1993;). Phorbol ester-induced downregulation of CD4 is a multistep process involving dissociation from p56lck, increased association with clathrin-coated pits, and altered endosomal sorting. . J Exp Med 178:, 1209–1222. [CrossRef][PubMed]
    [Google Scholar]
  34. Planche T.. ( 2013;). Clostridium difficile. . Medicine 41:, 654–657. [CrossRef]
    [Google Scholar]
  35. Rousseau C., Poilane I., De Pontual L., Maherault A. C., Le Monnier A., Collignon A.. ( 2012;). Clostridium difficile carriage in healthy infants in the community: a potential reservoir for pathogenic strains. . Clin Infect Dis 55:, 1209–1215. [CrossRef][PubMed]
    [Google Scholar]
  36. Spellberg B., Guidos R., Gilbert D., Bradley J., Boucher H. W., Scheld W. M., Bartlett J. G., Edwards J. Jr.Infectious Diseases Society of America ( 2008;). The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. . Clin Infect Dis 46:, 155–164. [CrossRef][PubMed]
    [Google Scholar]
  37. Thaiss C. A., Levy M., Suez J., Elinav E.. ( 2014;). The interplay between the innate immune system and the microbiota. . Curr Opin Immunol 26:, 41–48. [CrossRef][PubMed]
    [Google Scholar]
  38. Ueno A., Jijon H., Chan R., Ford K., Hirota C., Kaplan G. G., Beck P. L., Iacucci M., Fort Gasia M.. & other authors ( 2013;). Increased prevalence of circulating novel IL-17 secreting Foxp3 expressing CD4+ T cells and defective suppressive function of circulating Foxp3+ regulatory cells support plasticity between Th17 and regulatory T cells in inflammatory bowel disease patients. . Inflamm Bowel Dis 19:, 2522–2534. [CrossRef][PubMed]
    [Google Scholar]
  39. Vadasz Z., Haj T., Kessel A., Toubi E.. ( 2013;). B-regulatory cells in autoimmunity and immune mediated inflammation. . FEBS Lett 587:, 2074–2078. [CrossRef][PubMed]
    [Google Scholar]
  40. van Nood E., Vrieze A., Nieuwdorp M., Fuentes S., Zoetendal E. G., de Vos W. M., Visser C. E., Kuijper E. J., Bartelsman J. F. W. M.. & other authors ( 2013;). Duodenal infusion of donor feces for recurrent Clostridium difficile. . N Engl J Med 368:, 407–415. [CrossRef][PubMed]
    [Google Scholar]
  41. Villano S. A., Seiberling M., Tatarowicz W., Monnot-Chase E., Gerding D. N.. ( 2012;). Evaluation of an oral suspension of VP20621, spores of nontoxigenic Clostridium difficile strain M3, in healthy subjects. . Antimicrob Agents Chemother 56:, 5224–5229. [CrossRef][PubMed]
    [Google Scholar]
  42. Wu D., Joyee A. G., Nandagopal S., Lopez M., Ma X., Berry J., Lin F.. ( 2013;). Effects of Clostridium difficile toxin A and B on human T lymphocyte migration. . Toxins (Basel) 5:, 926–938. [CrossRef][PubMed]
    [Google Scholar]
  43. Yacyshyn M. B., Yacyshyn B.. ( 2013;). The role of gut inflammation in recurrent Clostridium difficile-associated disease. . Clin Infect Dis 56:, 1722–1723. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.075382-0
Loading
/content/journal/jmm/10.1099/jmm.0.075382-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error