1887

Abstract

The antifungal activity of the saponin-rich fractions (SFs) from (aerial parts and roots) and (used as a well-known source of plant saponins) against reference and clinical strains, their yeast-to-hyphal conversion, adhesion, and biofilm formation was investigated. Direct fungicidal/fungistatic properties of the tested phytochemicals used alone, as well as their synergy with azoles (probably resulting from yeast cell wall instability) were demonstrated. Here, to the best of our knowledge, we report for the first time the ability of saponin-rich extracts of and to inhibit germ tube formation, limit hyphal growth, reduce yeast adherence and biofilm formation, and eradicate mature (24 h) biofilm. Moreover, SFs (mainly obtained from aerial parts), in the range of concentrations which were active modulators of virulence factors, exhibited low cytotoxicity against the mouse fibroblast line L929. These properties seem to be very promising in the context of using plant-derived SFs as potential novel antifungal therapeutics supporting classic drugs or as ingredients of disinfectants.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.075291-0
2014-08-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/8/1076.html?itemId=/content/journal/jmm/10.1099/jmm.0.075291-0&mimeType=html&fmt=ahah

References

  1. Abid Ali Khan M. M. , Naqvi T. S. , Naqvi M. S. . ( 2012; ). Identification of phytosaponis as novel biodynamic agents: an updated overview. . Asian J Exp Biol Sci 3:, 459–467.
    [Google Scholar]
  2. Avato P. , Bucci R. , Tava A. , Vitali C. , Rosato A. , Bialy Z. , Jurzysta M. . ( 2006; ). Antimicrobial activity of saponins from Medicago sp.: structure–activity relationship. . Phytother Res 20:, 454–457. [CrossRef] [PubMed]
    [Google Scholar]
  3. Balestrazzi A. , Agoni V. , Tava A. , Avato P. , Biazzi E. , Raimondi E. , Macovei A. , Carbonera D. . ( 2011; ). Cell death induction and nitric oxide biosynthesis in white poplar (Populus alba) suspension cultures exposed to alfalfa saponins. . Physiol Plant 141:, 227–238. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bhattacharyya S. , Gupta P. , Banerjee G. , Jain A. , Singh M. . ( 2013; ). In-vitro inhibition of biofilm formation in Candida albicans and Candida tropicalis by heat stable compounds in culture filtrate of Aspergillus flavus . . J Clin Diagn Res 7:, 2167–2169.[PubMed]
    [Google Scholar]
  5. Bink A. , Pellens K. , Cammue B. P. A. , Thevissen K. . ( 2011; ). Anti-biofilm strategies: how to eradicate Candida biofilms?. Open Mycol J 5:, 29–38. [CrossRef]
    [Google Scholar]
  6. Böttger S. , Melzig M. F. . ( 2011; ). Triterpenoid saponins of the Caryophyllaceae and Illecebraceae family. . Phytochem Lett 4:, 59–68. [CrossRef]
    [Google Scholar]
  7. Budzyńska A. , Sadowska B. , Lipowczan G. , Maciąg A. , Kalemba D. , Różalska B. . ( 2013; ). Activity of selected essential oils against Candida spp. strains. Evaluation of new aspects of their specific pharmacological properties, with special reference to Lemon Balm. . Adv Microb 3:, 317–325. [CrossRef]
    [Google Scholar]
  8. Cannon R. D. , Lamping E. , Holmes A. R. , Niimi K. , Baret P. V. , Keniya M. V. , Tanabe K. , Niimi M. , Goffeau A. , Monk B. C. . ( 2009; ). Efflux-mediated antifungal drug resistance. . Clin Microbiol Rev 22:, 291–321. [CrossRef] [PubMed]
    [Google Scholar]
  9. Carelli M. , Biazzi E. , Panara F. , Tava A. , Scaramelli L. , Porceddu A. , Graham N. , Odoardi M. , Piano E. et al. ( 2011; ). Medicago truncatula CYP716A12 is a multifunctional oxidase involved in the biosynthesis of hemolytic saponins. . Plant Cell 23:, 3070–3081. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chai L. Y. A. , Netea M. G. , Vonk A. G. , Kullberg B. J. . ( 2009; ). Fungal strategies for overcoming host innate immune response. . Med Mycol 47:, 227–236. [CrossRef] [PubMed]
    [Google Scholar]
  11. Chandra J. , Kuhn D. M. , Mukherjee P. K. , Hoyer L. L. , McCormick T. , Ghannoum M. A. . ( 2001; ). Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. . J Bacteriol 183:, 5385–5394. [CrossRef] [PubMed]
    [Google Scholar]
  12. Chevalier M. , Medioni E. , Prêcheur I. . ( 2012; ). Inhibition of Candida albicans yeast-hyphal transition and biofilm formation by Solidago virgaurea water extracts. . J Med Microbiol 61:, 1016–1022. [CrossRef] [PubMed]
    [Google Scholar]
  13. CLSI ( 2009; ). Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts; Approved Guideline, 2nd edn, M44-A2. . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  14. Coleman J. J. , Okoli I. , Tegos G. P. , Holson E. B. , Wagner F. F. , Hamblin M. R. , Mylonakis E. . ( 2010; ). Characterization of plant-derived saponin natural products against Candida albicans . . ACS Chem Biol 5:, 321–332. [CrossRef] [PubMed]
    [Google Scholar]
  15. Czaban J. , Modloch J. , Wroblewska B. , Szumacher-Strabel M. , Cieslak A. , Oleszek W. , Stochmal A. . ( 2013; ). Effects of triterpenoid saponins of field scabious (Knautia arvensis L. Coult.) alfalfa, red clover and common soapwort on growth of Gaeumannomyces graminis var. tritici and Fusarium culmorum . . Allelopathy J 32:, 79–90.
    [Google Scholar]
  16. D’Addabbo T. , Carbonara T. , Leonetti P. , Radicci V. , Tava A. , Avato P. . ( 2011; ). Control of plant parasitic nematodes with active saponins and biomass from Medicago sativa . . Phytochem Rev 10:, 503–519. [CrossRef]
    [Google Scholar]
  17. Dongari-Bagtzoglou A. . ( 2008; ). Mucosal biofilms: challenges and future directions. . Expert Rev Anti Infect Ther 6:, 141–144. [CrossRef] [PubMed]
    [Google Scholar]
  18. Enjalbert B. , MacCallum D. M. , Odds F. C. , Brown A. J. P. . ( 2007; ). Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans . . Infect Immun 75:, 2143–2151. [CrossRef] [PubMed]
    [Google Scholar]
  19. Francis G. , Kerem Z. , Makkar H. P. S. , Becker K. . ( 2002; ). The biological action of saponins in animal systems: a review. . Br J Nutr 88:, 587–605. [CrossRef] [PubMed]
    [Google Scholar]
  20. Gauwerky K. , Borelli C. , Korting H. C. . ( 2009; ). Targeting virulence: a new paradigm for antifungals. . Drug Discov Today 14:, 214–222. [CrossRef] [PubMed]
    [Google Scholar]
  21. Gropp K. , Schild L. , Schindler S. , Hube B. , Zipfel P. F. , Skerka Ch. . ( 2009; ). The yeast Candida albicans evades human complement attack by secretion of aspartic proteases. . Mol Immunol 47:, 465–475. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kabir M. A. , Ahmad Z. . ( 2013; ). Candida infections and their prevention. . ISRN Prev Med 2013:, 763628. [CrossRef]
    [Google Scholar]
  23. Kabir M. A. , Hussain M. A. , Ahmad Z. . ( 2012; ). Candida albicans: a model organisms for studying fungal pathogens. . ISRN Microbiol 2012:, 538694. [CrossRef] [PubMed]
    [Google Scholar]
  24. Liu R. H. . ( 2003; ). Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. . Am J Clin Nutr 78: (Suppl), 517S–520S.[PubMed]
    [Google Scholar]
  25. Mathé L. , Van Dijck P. . ( 2013; ). Recent insights into Candida albicans biofilm resistance mechanisms. . Curr Genet 59:, 251–264. [CrossRef] [PubMed]
    [Google Scholar]
  26. Missall T. A. , Lodge J. K. , McEwen J. E. . ( 2004; ). Mechanisms of resistance to oxidative and nitrosative stress: implications for fungal survival in mammalian hosts. . Eukaryot Cell 3:, 835–846. [CrossRef] [PubMed]
    [Google Scholar]
  27. Naicker S. D. , Patel M. . ( 2013; ). Dodonaea viscosa var. angustifolia inhibits germ tube and biofilm formation by C. albicans . . Evid Based Complement Alternat Med 2013:, 261978. [CrossRef] [PubMed]
    [Google Scholar]
  28. Pemán J. , Cantón E. , Espinel-Ingroff A. . ( 2009; ). Antifungal drug resistance mechanisms. . Expert Rev Anti Infect Ther 7:, 453–460. [CrossRef] [PubMed]
    [Google Scholar]
  29. Rajeshkumar R. , Sundararaman M. . ( 2012; ). Emergence of Candida spp. and exploration of natural bioactive molecules for anticandidal therapy – status quo . . Mycoses 55:, e60–e73. [CrossRef] [PubMed]
    [Google Scholar]
  30. Sardi J. C. O. , Scorzoni L. , Bernardi T. , Fusco-Almeida A. M. , Mendes Giannini M. J. S. . ( 2013; ). Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. . J Med Microbiol 62:, 10–24. [CrossRef] [PubMed]
    [Google Scholar]
  31. Seeram N. P. , Adams L. S. , Henning S. M. , Niu Y. , Zhang Y. , Nair M. G. , Heber D. . ( 2005; ). In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. . J Nutr Biochem 16:, 360–367. [CrossRef] [PubMed]
    [Google Scholar]
  32. Soustre J. , Rodier M.-H. , Imbert-Bouyer S. , Daniault G. , Imbert C. . ( 2004; ). Caspofungin modulates in vitro adherence of Candida albicans to plastic coated with extracellular matrix proteins. . J Antimicrob Chemother 53:, 522–525. [CrossRef] [PubMed]
    [Google Scholar]
  33. Sparg S. G. , Light M. E. , van Staden J. . ( 2004; ). Biological activities and distribution of plant saponins. . J Ethnopharmacol 94:, 219–243. [CrossRef] [PubMed]
    [Google Scholar]
  34. Sung W. S. , Lee D. G. . ( 2008; ). In vitro candidacidal action of Korean red ginseng saponins against Candida albicans . . Biol Pharm Bull 31:, 139–142. [CrossRef] [PubMed]
    [Google Scholar]
  35. Tava A. , Avato P. . ( 2006; ). Chemical and biological activity of triterpene saponins from Medicago species. . Nat Prod Commun 1:, 1159–1180.
    [Google Scholar]
  36. te Welscher Y. M. , ten Napel H. H. , Balagué M. M. , Souza C. M. , Riezman H. , de Kruijff B. , Breukink E. . ( 2008; ). Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane. . J Biol Chem 283:, 6393–6401. [CrossRef] [PubMed]
    [Google Scholar]
  37. Timbekova A. E. , Isaev M. I. , Abubakirov N. K. . ( 1996; ). Chemistry and biological activity of triterpenoid glycosides from Medicago sativa. . Adv Exp Med Biol 405:, 171–182. [CrossRef] [PubMed]
    [Google Scholar]
  38. Tlamçani Z. , Er-rami M. . ( 2013; ). Fungal opportunist infection: common and emerging fungi in immunocompromised patients. . J Immunol Tech Infect Dis 2:, 2. [CrossRef] [PubMed]
    [Google Scholar]
  39. Tsuzuki J. K. , Svidzinski T. I. E. , Shinobu C. S. , Silva L. F. A. , Rodrigues-Filho E. , Cortez D. A. G. , Ferreira I. C. P. . ( 2007; ). Antifungal activity of the extracts and saponins from Sapindus saponaria L.. An Acad Bras Cienc 79:, 577–583. [CrossRef] [PubMed]
    [Google Scholar]
  40. Udgirkar R. F. , Kadam P. , Kale N. . ( 2013; ). Pharmacological importance of saponin glycoside: a review. . Int J Med Pharm Sci Res Rev 1:, 19–31.[CrossRef]
    [Google Scholar]
  41. Weng A. , Jenett-Siems K. , Schmieder P. , Bachran D. , Bachran C. , Görick C. , Thakur M. , Fuchs H. , Melzig M. F. . ( 2010; ). A convenient method for saponin isolation in tumour therapy. . J Chromatogr B Analyt Technol Biomed Life Sci 878:, 713–718. [CrossRef] [PubMed]
    [Google Scholar]
  42. Wu T. , Wright K. , Hurst S. F. , Morrison C. J. . ( 2000; ). Enhanced extracellular production of aspartyl proteinase, a virulence factor, by Candida albicans isolates following growth in subinhibitory concentrations of fluconazole. . Antimicrob Agents Chemother 44:, 1200–1208. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.075291-0
Loading
/content/journal/jmm/10.1099/jmm.0.075291-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error