1887

Abstract

Coagulase-negative staphylococci (CNS), especially and , have emerged as opportunistic pathogens in immunocompromised patients and those with indwelling medical devices. In this study, CNS recovered from patients with bloodstream infections (BSIs) or prosthetic-device-associated infections (PDAIs) were compared in terms of biofilm formation, antimicrobial resistance, clonal distribution, and carriage of adhesin and toxin genes. A total of 226 CNS isolates (168 and 58 ) recovered from hospital inpatients with BSIs (100 isolates) or PDAIs (126 isolates) were tested for biofilm formation, antimicrobial susceptibility, and , operon, adhesin (, , , , ) and toxin (, , ) genes. The selected CNS were classified into pulsotypes by PFGE and assigned to sequence types by multilocus sequence typing. In total, 106/226 isolates (46.9 %) produced biofilm, whereas 150 (66.4 %) carried the operon. Most isolates carried and were multidrug resistant (90.7 %). CNS recovered from BSIs were significantly more likely to produce biofilm ( = 0.003), be resistant to antimicrobials and carry (<0.001), as compared with isolates derived from PDAIs. CNS from PDAIs were more likely to carry the and genes ( = 0.006 and  = 0.045, respectively). No significant differences in the carriage of toxin genes were identified (>0.05). Although PFGE revealed genetic diversity, especially among , analysis of representative strains from the main PFGE types by multilocus sequence typing revealed three major clones (ST2, ST5 and ST16). A clonal relationship was found with respect to antimicrobial susceptibility and and gene carriage, reinforcing the premise of clonal expansion in hospital settings. The results of this study suggest that the pathogenesis of BSIs is associated with biofilm formation and high-level antimicrobial resistance, whereas PDAIs are related to the adhesion capabilities of and strains.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.075259-0
2014-11-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/11/1500.html?itemId=/content/journal/jmm/10.1099/jmm.0.075259-0&mimeType=html&fmt=ahah

References

  1. Arciola C. R., Campoccia D., Gamberini S., Cervellati M., Donati E., Montanaro L. 2002; Detection of slime production by means of an optimised Congo red agar plate test based on a colourimetric scale in Staphylococcus epidermidis clinical isolates genotyped for ica locus. Biomaterials 23:4233–4239 [View Article][PubMed]
    [Google Scholar]
  2. Arciola C. R., Campoccia D., Gamberini S., Donati M. E., Montanaro L. 2004; Presence of fibrinogen-binding adhesin gene in Staphylococcus epidermidis isolates from central venous catheters-associated and orthopaedic implant-associated infections. Biomaterials 25:4825–4829 [View Article][PubMed]
    [Google Scholar]
  3. Barros E. M., Ceotto H., Bastos M. C. F., Dos Santos K. R. N., Giambiagi-Demarval M. 2012; Staphylococcus haemolyticus as an important hospital pathogen and carrier of methicillin resistance genes. J Clin Microbiol 50:166–168 [View Article][PubMed]
    [Google Scholar]
  4. Chambers H. F. 1997; Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev 10:781–791[PubMed]
    [Google Scholar]
  5. Cherifi S., Byl B., Deplano A., Nonhoff C., Denis O., Hallin M. 2013; Comparative epidemiology of Staphylococcus epidermidis isolates from patients with catheter-related bacteremia and from healthy volunteers. J Clin Microbiol 51:1541–1547 [View Article][PubMed]
    [Google Scholar]
  6. CLSI 2011; Performance Standards for Antimicrobial Susceptibility Testing; 21th Informational Supplement M100-S21. Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  7. da Cunha Mde L., Calsolari R. A., Júnior J. P. 2007; Detection of enterotoxin and toxic shock syndrome toxin 1 genes in Staphylococcus, with emphasis on coagulase-negative staphylococci. Microbiol Immunol 51:381–390 [View Article][PubMed]
    [Google Scholar]
  8. Donlan R. M., Costerton J. W. 2002; Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193 [View Article][PubMed]
    [Google Scholar]
  9. Edwards A. M., Potts J. R., Josefsson E., Massey R. C. 2010; Staphylococcus aureus host cell invasion and virulence in sepsis is facilitated by the multiple repeats within FnBPA. PLoS Pathog 6:e1000964 [View Article][PubMed]
    [Google Scholar]
  10. Fredheim E. G., Klingenberg C., Rohde H., Frankenberger S., Gaustad P., Flaegstad T., Sollid J. E. 2009; Biofilm formation by Staphylococcus haemolyticus. J Clin Microbiol 47:1172–1180 [View Article][PubMed]
    [Google Scholar]
  11. Gomes A. R., Vinga S., Zavolan M., de Lencastre H. 2005; Analysis of the genetic variability of virulence-related loci in epidemic clones of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 49:366–379 [View Article][PubMed]
    [Google Scholar]
  12. Horan T. C., Andrus M., Dudeck M. A. 2008; CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 36:309–332 [View Article][PubMed]
    [Google Scholar]
  13. Kontos F., Petinaki E., Spiliopoulou I., Maniati M., Maniatis A. N. 2003; Evaluation of a novel method based on PCR restriction fragment length polymorphism analysis of the tuf gene for the identification of Staphylococcus species. J Microbiol Methods 55:465–469 [View Article][PubMed]
    [Google Scholar]
  14. Liakopoulos A., Spiliopoulou I., Damani A., Kanellopoulou M., Schoina S., Papafragas E., Marangos M., Fligou F., Zakynthinos E.& other authors ( 2010; Dissemination of two international linezolid-resistant Staphylococcus epidermidis clones in Greek hospitals. J Antimicrob Chemother 65:1070–1071 [View Article][PubMed]
    [Google Scholar]
  15. Mack D., Fischer W., Krokotsch A., Leopold K., Hartmann R., Egge H., Laufs R. 1996; The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear β-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178:175–183[PubMed]
    [Google Scholar]
  16. Marrack P., Kappler J. 1990; The staphylococcal enterotoxins and their relatives. Science 248:705–711 [View Article][PubMed]
    [Google Scholar]
  17. McCann M. T., Gilmore B. F., Gorman S. P. 2008; Staphylococcus epidermidis device-related infections: pathogenesis and clinical management. J Pharm Pharmacol 60:1551–1571 [View Article][PubMed]
    [Google Scholar]
  18. Miragaia M., Thomas J. C., Couto I., Enright M. C., de Lencastre H. 2007; Inferring a population structure for Staphylococcus epidermidis from multilocus sequence typing data. J Bacteriol 189:2540–2552 [View Article][PubMed]
    [Google Scholar]
  19. Miragaia M., Carriço J. A., Thomas J. C., Couto I., Enright M. C., de Lencastre H. 2008; Comparison of molecular typing methods for characterization of Staphylococcus epidermidis: proposal for clone definition. J Clin Microbiol 46:118–129 [View Article][PubMed]
    [Google Scholar]
  20. Montanaro L., Speziale P., Campoccia D., Ravaioli S., Cangini I., Pietrocola G., Giannini S., Arciola C. R. 2011; Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol 6:1329–1349 [View Article][PubMed]
    [Google Scholar]
  21. O’Gara J. P. 2007; ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett 270:179–188 [View Article][PubMed]
    [Google Scholar]
  22. Petrelli D., Zampaloni C., D’Ercole S., Prenna M., Ballarini P., Ripa S., Vitali L. A. 2006; Analysis of different genetic traits and their association with biofilm formation in Staphylococcus epidermidis isolates from central venous catheter infections. Eur J Clin Microbiol Infect Dis 25:773–781 [View Article][PubMed]
    [Google Scholar]
  23. Potter A., Ceotto H., Giambiagi-deMarval M., dos Santos K. R., Nes I. F., Bastos M. C. 2009; The gene bap, involved in biofilm production, is present in Staphylococcus spp. strains from nosocomial infections. J Microbiol 47:319–326 [View Article][PubMed]
    [Google Scholar]
  24. Qin Z., Ou Y., Yang L., Zhu Y., Tolker-Nielsen T., Molin S., Qu D. 2007; Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology 153:2083–2092 [View Article][PubMed]
    [Google Scholar]
  25. Rohde H., Burdelski C., Bartscht K., Hussain M., Buck F., Horstkotte M. A., Knobloch J. K., Heilmann C., Herrmann M., Mack D. 2005; Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol 55:1883–1895 [View Article][PubMed]
    [Google Scholar]
  26. Rohde H., Burandt E. C., Siemssen N., Frommelt L., Burdelski C., Wurster S., Scherpe S., Davies A. P., Harris L. G.& other authors ( 2007; Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 28:1711–1720 [View Article][PubMed]
    [Google Scholar]
  27. Santos Sanches I., Mato R., de Lencastre H., Tomasz A.CEM/NET Collaborators and the International Collaborators 2000; Patterns of multidrug resistance among methicillin-resistant hospital isolates of coagulase-positive and coagulase-negative staphylococci collected in the international multicenter study RESIST in 1997 and 1998. Microb Drug Resist 6:199–211 [View Article][PubMed]
    [Google Scholar]
  28. Silva P. V., Cruz R. S., Keim L. S., Paula G. R., Carvalho B. T., Coelho L. R., Carvalho M. C., Rosa J. M., Figueiredo A. M., Teixeira L. A. 2013; The antimicrobial susceptibility, biofilm formation and genotypic profiles of Staphylococcus haemolyticus from bloodstream infections. Mem Inst Oswaldo Cruz 108:812–813 [View Article][PubMed]
    [Google Scholar]
  29. Spiliopoulou A. I., Krevvata M. I., Kolonitsiou F., Harris L. G., Wilkinson T. S., Davies A. P., Dimitracopoulos G. O., Karamanos N. K., Mack D., Anastassiou E. D. 2012; An extracellular Staphylococcus epidermidis polysaccharide: relation to polysaccharide intercellular adhesin and its implication in phagocytosis. BMC Microbiol 12:76 [View Article][PubMed]
    [Google Scholar]
  30. Stepanović S., Vuković D., Hola V., Di Bonaventura G., Djukić S., Cirković I., Ruzicka F. 2007; Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115:891–899 [View Article][PubMed]
    [Google Scholar]
  31. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B. 1995; Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239[PubMed]
    [Google Scholar]
  32. Thomas J. C., Vargas M. R., Miragaia M., Peacock S. J., Archer G. L., Enright M. C. 2007; Improved multilocus sequence typing scheme for Staphylococcus epidermidis. J Clin Microbiol 45:616–619 [View Article][PubMed]
    [Google Scholar]
  33. Tristan A., Ying L., Bes M., Etienne J., Vandenesch F., Lina G. 2003; Use of multiplex PCR to identify Staphylococcus aureus adhesins involved in human hematogenous infections. J Clin Microbiol 41:4465–4467 [View Article][PubMed]
    [Google Scholar]
  34. Valour F., Trouillet-Assant S., Rasigade J. P., Lustig S., Chanard E., Meugnier H., Tigaud S., Vandenesch F., Etienne J.& other authors ( 2013; Staphylococcus epidermidis in orthopedic device infections: the role of bacterial internalization in human osteoblasts and biofilm formation. PLoS ONE 8:e67240 [View Article][PubMed]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.075259-0
Loading
/content/journal/jmm/10.1099/jmm.0.075259-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error