1887

Abstract

Oral malodour is thought to be caused mainly by the production of volatile sulfide compounds (VSCs) by anaerobic Gram-negative oral bacteria. Previous studies have shown that these bacteria are susceptible to blue light (400–500 nm wavelength). In the present study, we tested the effect of blue light in the presence of zinc, erythrosine B or both on malodour production in an experimental oral biofilm. Biofilms were exposed to a plasma-arc light source for 30, 60 and 120 s (equal to energy fluxes of 41, 82 and 164 J cm, respectively) with or without the addition of zinc acetate, erythrosine B or both. After the light exposure, biofilm samples were examined for malodour production (by an odour judge) and VSC production (with a Halimeter), and VSC-producing bacteria were quantified using a microscopy-based sulfide assay (MSA) and confocal laser scanning microscopy (CLSM). Results showed that exposing experimental oral biofilm to both blue light and zinc reduced malodour production, which coincided with a reduction in VSC-producing bacteria in the biofilm. These results suggest that zinc enhances the phototoxicity of blue light against malodour-producing bacteria.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.075044-0
2014-08-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/8/1071.html?itemId=/content/journal/jmm/10.1099/jmm.0.075044-0&mimeType=html&fmt=ahah

References

  1. Aggarwal B. B., Quintanilha A. T., Cammack R., Packer L.. ( 1978;). Damage to mitochondrial electron transport and energy coupling by visible light. . Biochim Biophys Acta 502:, 367–382. [CrossRef][PubMed]
    [Google Scholar]
  2. Berg M., Fosdick L. S.. ( 1946;). Studies in periodontal disease; putrefactive organisms in the mouth. . J Dent Res 25:, 73–81. [CrossRef][PubMed]
    [Google Scholar]
  3. De Boever E. H., Loesche W. J.. ( 1995;). Assessing the contribution of anaerobic microflora of the tongue to oral malodor. . J Am Dent Assoc 126:, 1384–1393. [CrossRef][PubMed]
    [Google Scholar]
  4. De Lucca A. J., Carter-Wientjes C., Williams K. A., Bhatnagar D.. ( 2012;). Blue light (470 nm) effectively inhibits bacterial and fungal growth. . Lett Appl Microbiol 55:, 460–466.[PubMed]
    [Google Scholar]
  5. Feuerstein O., Persman N., Weiss E. I.. ( 2004;). Phototoxic effect of visible light on Porphyromonas gingivalis and Fusobacterium nucleatum: an in vitro study. . Photochem Photobiol 80:, 412–415. [CrossRef][PubMed]
    [Google Scholar]
  6. Goldberg S., Kozlovsky A., Rosenberg M.. ( 1997;). Association of diamines with oral malodor. . In Bad Breath: Research Perspective, , 2nd edn., pp. 71–85. Edited by Rosenberg M... Tel Aviv:: Ramot Publishing – Tel Aviv University;.
    [Google Scholar]
  7. Gorgidze L. A., Oshemkova S. A., Vorobjev I. A.. ( 1998;). Blue light inhibits mitosis in tissue culture cells. . Biosci Rep 18:, 215–224. [CrossRef][PubMed]
    [Google Scholar]
  8. Gourmelon M., Cillard J., Pommepuy M.. ( 1994;). Visible light damage to Escherichia coli in seawater: oxidative stress hypothesis. . J Appl Bacteriol 77:, 105–112. [CrossRef][PubMed]
    [Google Scholar]
  9. Henry C. A., Judy M., Dyer B., Wagner M., Matthews J. L.. ( 1995;). Sensitivity of Porphyromonas and Prevotella species in liquid media to argon laser. . Photochem Photobiol 61:, 410–413. [CrossRef][PubMed]
    [Google Scholar]
  10. Henry C. A., Dyer B., Wagner M., Judy M., Matthews J. L.. ( 1996;). Phototoxicity of argon laser irradiation on biofilms of Porphyromonas and Prevotella species. . J Photochem Photobiol B 34:, 123–128. [CrossRef][PubMed]
    [Google Scholar]
  11. Jonski G., Young A., Wåler S. M., Rölla G.. ( 2004;). Insoluble zinc, cupric and tin pyrophosphates inhibit the formation of volatile sulphur compounds. . Eur J Oral Sci 112:, 429–432. [CrossRef][PubMed]
    [Google Scholar]
  12. Kleinberg I., Codipilly M.. ( 1997;). The biological basis of oral malodor formation. . In Bad Breath: Research Perspective, , 2nd edn., pp. 13–39. Edited by Rosenberg M... Tel Aviv:: Ramot Publishing – Tel Aviv University;.
    [Google Scholar]
  13. König K., Teschke M., Sigusch B., Glockmann E., Eick S., Pfister W.. ( 2000;). Red light kills bacteria via photodynamic action. . Cell Mol Biol (Noisy-le-grand) 46:, 1297–1303.[PubMed]
    [Google Scholar]
  14. Lee Y. H., Park H. W., Lee J. H., Seo H. W., Lee S. Y.. ( 2012;). The photodynamic therapy on Streptococcus mutans biofilms using erythrosine and dental halogen curing unit. . Int J Oral Sci 4:, 196–201. [CrossRef][PubMed]
    [Google Scholar]
  15. Massey V.. ( 2000;). The chemical and biological versatility of riboflavin. . Biochem Soc Trans 28:, 283–296. [CrossRef][PubMed]
    [Google Scholar]
  16. McNamara T. F., Alexander J. F., Lee M.. ( 1972;). The role of microorganisms in the production of oral malodor. . Oral Surg Oral Med Oral Pathol 34:, 41–48. [CrossRef][PubMed]
    [Google Scholar]
  17. Ng A. M., Chan C. M., Guo M. Y., Leung Y. H., Djurišić A. B., Hu X., Chan W. K., Leung F. C., Tong S. Y.. ( 2013;). Antibacterial and photocatalytic activity of TiO2 and ZnO nanomaterials in phosphate buffer and saline solution. . Appl Microbiol Biotechnol 97:, 5565–5573. [CrossRef][PubMed]
    [Google Scholar]
  18. Persson S., Claesson R., Carlsson J.. ( 1989;). The capacity of subgingival microbiotas to produce volatile sulfur compounds in human serum. . Oral Microbiol Immunol 4:, 169–172. [CrossRef][PubMed]
    [Google Scholar]
  19. Pflaum M., Kielbassa C., Garmyn M., Epe B.. ( 1998;). Oxidative DNA damage induced by visible light in mammalian cells: extent, inhibition by antioxidants and genotoxic effects. . Mutat Res 408:, 137–146. [CrossRef][PubMed]
    [Google Scholar]
  20. Rosenberg M., Septon I., Eli I., Bar-Ness R., Gelernter I., Brenner S., Gabbay J.. ( 1991;). Halitosis measurement by an industrial sulphide monitor. . J Periodontol 62:, 487–489. [CrossRef][PubMed]
    [Google Scholar]
  21. Sheng J., Nguyen P. T., Marquis R. E.. ( 2005;). Multi-target antimicrobial actions of zinc against oral anaerobes. . Arch Oral Biol 50:, 747–757. [CrossRef][PubMed]
    [Google Scholar]
  22. Soukos N. S., Som S., Abernethy A. D., Ruggiero K., Dunham J., Lee C., Doukas A. G., Goodson J. M.. ( 2005;). Phototargeting oral black-pigmented bacteria. . Antimicrob Agents Chemother 49:, 1391–1396. [CrossRef][PubMed]
    [Google Scholar]
  23. Sterer N., Feuerstein O.. ( 2005;). Effect of visible light on malodour production by mixed oral microflora. . J Med Microbiol 54:, 1225–1229. [CrossRef][PubMed]
    [Google Scholar]
  24. Sterer N., Hendler A., Davidi M. P., Rosenberg M.. ( 2008;). A novel microscopic assay for oral malodor-related microorganisms. . J Breath Res 2:, 026003. [CrossRef][PubMed]
    [Google Scholar]
  25. Sterer N., Shaharabany M., Rosenberg M.. ( 2009;). β-Galactosidase activity and H2S production in an experimental oral biofilm. . J Breath Res 3:, 016006. [CrossRef][PubMed]
    [Google Scholar]
  26. Tonzetich J., Carpenter P. A. W.. ( 1971;). Production of volatile sulphur compounds from cysteine, cystine and methionine by human dental plague. . Arch Oral Biol 16:, 599–607. [CrossRef][PubMed]
    [Google Scholar]
  27. Wataha J. C., Lockwood P. E., Lewis J. B., Rueggeberg F. A., Messer R. L.. ( 2004;). Biological effects of blue light from dental curing units. . Dent Mater 20:, 150–157. [CrossRef][PubMed]
    [Google Scholar]
  28. Wilson M.. ( 1994;). Bactericidal effect of laser light and its potential use in the treatment of plaque-related diseases. . Int Dent J 44:, 181–189.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.075044-0
Loading
/content/journal/jmm/10.1099/jmm.0.075044-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error