1887

Abstract

Outbreaks associated with rapidly growing mycobacteria (RGM) have been increasingly reported worldwide, including in Brazil. Among the RGM, the complex is the most pathogenic and related to multidrug resistance. The aim of this study was to evaluate the antimicrobial susceptibility and molecular profile of RGM isolates involved in new postsurgical infection outbreaks in Brazil since 2007. Of the 109 cases reported in the state of Rio Grande do Sul between 2007 and 2011, 43 (39 %) had confirmed mycobacterial growth in culture. Clinical isolates were obtained from biopsy specimens or abscess aspirates. PRA- restriction pattern identified the isolates as type 2, and partial sequencing confirmed the identification as subsp. . All isolates were susceptible to amikacin and resistant to ciprofloxacin, doxycycline, sulfamethoxazole, moxifloxacin and tobramycin. Most isolates (72 %) were fully susceptible to cefoxitin but six isolates (14 %) were fully resistant to clarithromycin. The latter differed from the susceptibility profiles of the previously described BRA100 clone from other Brazilian regions. Nevertheless, pulsed-field gel electrophoresis analysis revealed that these isolates belonged to a single BRA100 clone. In conclusion, our study reports the persistence of an emergent single and highly resistant clone of subsp. for several years even after national implementation of infection control measures.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.074906-0
2014-10-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/10/1288.html?itemId=/content/journal/jmm/10.1099/jmm.0.074906-0&mimeType=html&fmt=ahah

References

  1. Adékambi T., Colson P., Drancourt M.. ( 2003;). rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. . J Clin Microbiol 41:, 5699–5708. [CrossRef][PubMed]
    [Google Scholar]
  2. Aitken M. L., Limaye A., Pottinger P., Whimbey E., Goss C. H., Tonelli M. R., Cangelosi G. A., Dirac M. A., Olivier K. N.. & other authors ( 2012;). Respiratory outbreak of Mycobacterium abscessus subspecies massiliense in a lung transplant and cystic fibrosis center. . Am J Respir Crit Care Med 185:, 231–232. [CrossRef][PubMed]
    [Google Scholar]
  3. ANVISA ( 2011;). Relatório descrito de investigação de casos de infecções por micobactérias não tuberculosas de crescimento rápido (MCR) no Brasil no período de 1998 a 2009. Gerência Geral de Tecnologia em Serviços de Saúde. http://www.anvisa.gov.br/hotsite/hotsite_micobacteria/relatorio_descrito_mcr_16_02_11.pdf
    [Google Scholar]
  4. Brown-Elliott B. A., Nash K. A., Wallace R. J. Jr. ( 2012;). Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. . Clin Microbiol Rev 25:, 545–582. [CrossRef][PubMed]
    [Google Scholar]
  5. Cardoso A. M., Martins de Sousa E., Viana-Niero C., Bonfim de Bortoli F., Pereira das Neves Z. C., Leão S. C., Junqueira-Kipnis A. P., Kipnis A.. ( 2008;). Emergence of nosocomial Mycobacterium massiliense infection in Goiás, Brazil. . Microbes Infect 10:, 1552–1557. [CrossRef][PubMed]
    [Google Scholar]
  6. Cheng A., Liu Y. C., Chen M. L., Hung C. C., Tsai Y. T., Sheng W. H., Liao C. H., Hsueh P. R., Chen Y. C., Chang S.-C.. ( 2013;). Extrapulmonary infections caused by a dominant strain of Mycobacterium massiliense (Mycobacterium abscessus subspecies bolletii). . Clin Microbiol Infect 19:, E473–E482. [CrossRef][PubMed]
    [Google Scholar]
  7. Chimara E., Ferrazoli L., Ueky S. Y., Martins M. C., Durham A. M., Arbeit R. D., Leão S. C.. ( 2008;). Reliable identification of mycobacterial species by PCR-restriction enzyme analysis (PRA)-hsp65 in a reference laboratory and elaboration of a sequence-based extended algorithm of PRA-hsp65 patterns. . BMC Microbiol 8:, 48. [CrossRef][PubMed]
    [Google Scholar]
  8. CLSI ( 2011;). Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes; Approved Standard, 2nd edn, CLSI document M24-A2. Wayne, PA:: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  9. Collins F. M., Montalbine V.. ( 1976;). Mycobactericidal activity of glutaraldehyde solutions. . J Clin Microbiol 4:, 408–412.[PubMed]
    [Google Scholar]
  10. Davidson R. M., Hasan N. A., de Moura V. C., Duarte R. S., Jackson M., Strong M.. ( 2013;). Phylogenomics of Brazilian epidemic isolates of Mycobacterium abscessus subsp. bolletii reveals relationships of global outbreak strains. . Infect Genet Evol 20:, 292–297. [CrossRef][PubMed]
    [Google Scholar]
  11. Donlan R. M.. ( 2001;). Biofilm formation: a clinically relevant microbiological process. . Clin Infect Dis 33:, 1387–1392. [CrossRef][PubMed]
    [Google Scholar]
  12. Duarte R. S., Lourenço M. C., Fonseca Lde. S., Leão S. C., Amorim Ede. L., Rocha I. L., Coelho F. S., Viana-Niero C., Gomes K. M.. & other authors ( 2009;). Epidemic of postsurgical infections caused by Mycobacterium massiliense.. J Clin Microbiol 47:, 2149–2155. [CrossRef][PubMed]
    [Google Scholar]
  13. Euzéby J. P.. ( 2014;). LPSN list of prokaryotic names with standing in nomenclature. . http://www.bacterio.net/
  14. Falkinham J. O. III. ( 2013;). Ecology of nontuberculous mycobacteria–where do human infections come from?. Semin Respir Crit Care Med 34:, 095–102. [CrossRef][PubMed]
    [Google Scholar]
  15. Griffith D. E., Aksamit T., Brown-Elliott B. A., Catanzaro A., Daley C., Gordin F., Holland S. M., Horsburgh R., Huitt G.. & other authors ( 2007;). An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. . Am J Respir Crit Care Med 175:, 367–416. [CrossRef][PubMed]
    [Google Scholar]
  16. Jolley K. A., Chan M. S., Maiden M. C.. ( 2004;). mlstdbNet – distributed multi-locus sequence typing (MLST) databases. . BMC Bioinformatics 5:, 86. [CrossRef][PubMed]
    [Google Scholar]
  17. Kasperbauer S., Huitt G.. ( 2013;). Management of extrapulmonary nontuberculous mycobacterial infections. . Semin Respir Crit Care Med 34:, 143–150. [CrossRef][PubMed]
    [Google Scholar]
  18. Koh W. J., Jeon K., Lee N. Y., Kim B. J., Kook Y. H., Lee S. H., Park Y. K., Kim C. K., Shin S. J.. & other authors ( 2011;). Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus.. Am J Respir Crit Care Med 183:, 405–410. [CrossRef][PubMed]
    [Google Scholar]
  19. Kothavade R. J., Dhurat R. S., Mishra S. N., Kothavade U. R.. ( 2013;). Clinical and laboratory aspects of the diagnosis and management of cutaneous and subcutaneous infections caused by rapidly growing mycobacteria. . Eur J Clin Microbiol Infect Dis 32:, 161–188. [CrossRef][PubMed]
    [Google Scholar]
  20. Leão S. C., Viana-Niero C., Matsumoto C. K., Lima K. V., Lopes M. L., Palaci M., Hadad D. J., Vinhas S., Duarte R. S.. & other authors ( 2010;). Epidemic of surgical-site infections by a single clone of rapidly growing mycobacteria in Brazil. . Future Microbiol 5:, 971–980. [CrossRef][PubMed]
    [Google Scholar]
  21. Lorena N. S., Pitombo M. B., Côrtes P. B., Maya M. C., Silva M. G., Carvalho A. C., Coelho F. S., Miyazaki N. H., Marques E. A.. & other authors ( 2010;). Mycobacterium massiliense BRA100 strain recovered from postsurgical infections: resistance to high concentrations of glutaraldehyde and alternative solutions for high level disinfection. . Acta Cir Bras 25:, 455–459. [CrossRef][PubMed]
    [Google Scholar]
  22. Monego F., Duarte R. S., Nakatani S. M., Araújo W. N., Riediger I. N., Brockelt S., Souza V., Cataldo J. I., da Silva Dias R. C., Biondo A. W.. ( 2011;). Molecular identification and typing of Mycobacterium massiliense isolated from postsurgical infections in Brazil. . Braz J Infect Dis 15:, 436–441. [CrossRef][PubMed]
    [Google Scholar]
  23. Redelman-Sidi G., Sepkowitz K. A.. ( 2010;). Rapidly growing mycobacteria infection in patients with cancer. . Clin Infect Dis 51:, 422–434. [CrossRef][PubMed]
    [Google Scholar]
  24. Sampaio J. L.. ( 2010;). Prokaryotic taxonomy rules and nomenclature changes in the Mycobacterium chelonae-abscessus group. . Future Microbiol 5:, 1457. [CrossRef][PubMed]
    [Google Scholar]
  25. Shang S., Gibbs S., Henao-Tamayo M., Shanley C. A., McDonnell G., Duarte R. S., Ordway D. J., Jackson M.. ( 2011;). Increased virulence of an epidemic strain of Mycobacterium massiliense in mice. . PLoS ONE 6:, e24726. [CrossRef][PubMed]
    [Google Scholar]
  26. Simões M., Pereira M. O., Vieira M. J.. ( 2005;). Effect of mechanical stress on biofilms challenged by different chemicals. . Water Res 39:, 5142–5152. [CrossRef][PubMed]
    [Google Scholar]
  27. Telenti A., Marchesi F., Balz M., Bally F., Böttger E. C., Bodmer T.. ( 1993;). Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. . J Clin Microbiol 31:, 175–178.[PubMed]
    [Google Scholar]
  28. Viana-Niero C., Lima K. V., Lopes M. L., da Silva Rabello M. C., Marsola L. R., Brilhante V. C., Durham A. M., Leão S. C.. ( 2008;). Molecular characterization of Mycobacterium massiliense and Mycobacterium bolletii in isolates collected from outbreaks of infections after laparoscopic surgeries and cosmetic procedures. . J Clin Microbiol 46:, 850–855. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.074906-0
Loading
/content/journal/jmm/10.1099/jmm.0.074906-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error