1887

Abstract

Infectious gastrointestinal disease is caused by a diverse array of pathogens, and is a challenging syndrome to correctly diagnose and manage. Conventional laboratory diagnostic methods are often time-consuming and frequently suffer from low detection rates. Two commercial multiplex nucleic acid amplification tests [Luminex xTAG Gastrointestinal Pathogen Panel (GPP) and Savyon Diagnostics Gastrointestinal Infection Panel (GIP)] were applied to 1000 stored diarrhoeal clinical stool samples. The Luminex xTAG GPP and Savyon GIP detected in 42/44 and 44/44 culture-positive samples, in 4/4 and 3/4 culture-positive samples, in 1/1 culture-positive sample, toxin in 32/35 ELISA-positive samples, and in 6/6 wet-preparation-microscopy-positive samples, respectively. When the Luminex GPP assay was used concurrently with conventional methods for 472 clinical samples, it detected in 22/22 culture-positive samples, in 1/1 culture-positive sample, toxin in 14/14 ELISA-positive samples and in 4/4 wet-preparation-microscopy-positive samples. The pathogen/toxin detection rate for conventional methods in both sample sets was <10 %. The Luminex xTAG GPP detection rate was 24.8 % in the stored samples and 32.6 % in the concurrently tested samples. The Savyon GIP detection rate was 22.5 %. From stored samples, 2.4 % of Luminex xTAG GPP detections and 3.1 % of Savyon GIP detections could not be confirmed using alternative nucleic acid amplification tests. Enhanced detection rates resulted from increased detection of pathogens routinely sought using conventional methods and were also due to ascertainment of micro-organisms that current testing strategies do not diagnose. Use of multiplex nucleic acid amplification tests will allow clinical laboratories to diagnose infectious gastroenteritis in more patients with diarrhoeal disease by increasing the sensitivity of pathogen detection and by reducing the selective bias of current strategies. The clinical and economic impact of these results warrants further investigation.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.074773-0
2014-11-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/11/1419.html?itemId=/content/journal/jmm/10.1099/jmm.0.074773-0&mimeType=html&fmt=ahah

References

  1. Barratt J. L. N., Harkness J., Marriott D., Ellis J. T., Stark D.. ( 2011;). A review of Dientamoeba fragilis carriage in humans: several reasons why this organism should be considered in the diagnosis of gastrointestinal illness. . Gut Microbes 2:, 3–12. [CrossRef][PubMed]
    [Google Scholar]
  2. Bessède E., Delcamp A., Sifré E., Buissonnière A., Mégraud F.. ( 2011;). New methods for detection of campylobacters in stool samples in comparison to culture. . J Clin Microbiol 49:, 941–944. [CrossRef][PubMed]
    [Google Scholar]
  3. Buvens G., De Gheldre Y., Dediste A., de Moreau A.-I., Mascart G., Simon A., Allemeersch D., Scheutz F., Lauwers S., Piérard D.. ( 2012;). Incidence and virulence determinants of verocytotoxin-producing Escherichia coli infections in the Brussels-Capital Region, Belgium, in 2008–2010. . J Clin Microbiol 50:, 1336–1345. [CrossRef][PubMed]
    [Google Scholar]
  4. Chapin K. C., Dickenson R. A., Wu F., Andrea S. B.. ( 2011;). Comparison of five assays for detection of Clostridium difficile toxin. . J Mol Diagn 13:, 395–400. [CrossRef][PubMed]
    [Google Scholar]
  5. Chui L., Lee M.-C., Malejczyk K., Lim L., Fok D., Kwong P.. ( 2011;). Prevalence of shiga toxin-producing Escherichia coli as detected by enzyme-linked immunoassays and real-time PCR during the summer months in northern Alberta, Canada. . J Clin Microbiol 49:, 4307–4310. [CrossRef][PubMed]
    [Google Scholar]
  6. Claas E. C., Burnham C.-A. D., Mazzulli T., Templeton K., Topin F.. ( 2013;). Performance of the xTAG® Gastrointestinal Pathogen Panel (GPP), a multiplex molecular assay for simultaneous detection of bacterial, viral, and parasitic causes of infectious gastroenteritis. . J Microbiol Biotechnol 23:, 1401–1045. [CrossRef]
    [Google Scholar]
  7. Coupland L. J., McElarney I., Meader E., Cowley K., Alcock L., Naunton J., Gray J.. ( 2013;). Simultaneous detection of viral and bacterial enteric pathogens using the Seeplex® Diarrhea ACE detection system. . Epidemiol Infect 141:, 2111–2121. [CrossRef][PubMed]
    [Google Scholar]
  8. Couturier M. R., Lee B., Zelyas N., Chui L.. ( 2011;). Shiga-toxigenic Escherichia coli detection in stool samples screened for viral gastroenteritis in Alberta, Canada. . J Clin Microbiol 49:, 574–578. [CrossRef][PubMed]
    [Google Scholar]
  9. Culbreath K., Ager E., Nemeyer R. J., Kerr A., Gilligan P. H.. ( 2012;). Evolution of testing algorithms at a university hospital for detection of Clostridium difficile infections. . J Clin Microbiol 50:, 3073–3076. [CrossRef][PubMed]
    [Google Scholar]
  10. Cunningham S. A., Sloan L. M., Nyre L. M., Vetter E. A., Mandrekar J., Patel R.. ( 2010;). Three-hour molecular detection of Campylobacter, Salmonella, Yersinia, and Shigella species in feces with accuracy as high as that of culture. . J Clin Microbiol 48:, 2929–2933. [CrossRef][PubMed]
    [Google Scholar]
  11. de Boer R. F., Ott A., Kesztyüs B., Kooistra-Smid A. M.. ( 2010;). Improved detection of five major gastrointestinal pathogens by use of a molecular screening approach. . J Clin Microbiol 48:, 4140–4146. [CrossRef][PubMed]
    [Google Scholar]
  12. de Jong E., de Jong A. S., Bartels C. J. M., van der Rijt-van den Biggelaar C., Melchers W. J. G., Sturm P. D. J.. ( 2012;). Clinical and laboratory evaluation of a real-time PCR for Clostridium difficile toxin A and B genes. . Eur J Clin Microbiol Infect Dis 31:, 2219–2225. [CrossRef][PubMed]
    [Google Scholar]
  13. Department of Health ( 2012;). Advisory Committee on Antimicrobial Resistance and Healthcare Associated Infection (ARHAI): Updated Guidance on the Diagnosis and Reporting of Clostridium difficile. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/215135/dh_133016.pdf.
    [Google Scholar]
  14. Deshpande A., Pasupuleti V., Rolston D. D. K., Jain A., Deshpande N., Pant C., Hernandez A. V.. ( 2011;). Diagnostic accuracy of real-time polymerase chain reaction in detection of Clostridium difficile in the stool samples of patients with suspected Clostridium difficile infection: a meta-analysis. . Clin Infect Dis 53:, e81–e90. [CrossRef][PubMed]
    [Google Scholar]
  15. Eastwood K., Else P., Charlett A., Wilcox M.. ( 2009;). Comparison of nine commercially available Clostridium difficile toxin detection assays, a real-time PCR assay for C. difficile tcdB, and a glutamate dehydrogenase detection assay to cytotoxin testing and cytotoxigenic culture methods. . J Clin Microbiol 47:, 3211–3217. [CrossRef][PubMed]
    [Google Scholar]
  16. Gould L. H., Bopp C., Strockbine N., Atkinson R., Baselski V., Body B., Carey R., Crandall C., Hurd S.. & other authors ( 2009;). Recommendations for diagnosis of shiga toxin-producing Escherichia coli infections by clinical laboratories. . MMWR Recomm Rep 58: (RR-12), 1–14.[PubMed]
    [Google Scholar]
  17. Halligan E., Edgeworth J., Bisnauthsing K., Bible J., Cliff P., Aarons E., Klein J., Patel A., Goldenberg S.. ( 2013;). Multiplex molecular testing for management of infectious gastroenteritis in a hospital setting: a comparative diagnostic and clinical utility study. . Clin Microbiol Infect doi:10.1111/1469-0691.12476 [Epub ahead of print]. [CrossRef][PubMed]
    [Google Scholar]
  18. Health Protection Agency ( 2013a;). Investigation of Faecal Specimens for Enteric Pathogens. UK Standards for Microbiology Investigations. B 30 Issue 8. http://www.hpa.org.uk/webc/hpawebfile/hpaweb_c/1317132856754.
    [Google Scholar]
  19. Health Protection Agency ( 2013b;). Investigation of Specimens other than Blood for Parasites. UK Standards for Microbiology Investigations. B 31 Issue 4. http://www.hpa.org.uk/webc/hpawebfile/hpaweb_c/1317132857407.
    [Google Scholar]
  20. Higgins R. R., Beniprashad M., Cardona M., Masney S., Low D. E., Gubbay J. B.. ( 2011;). Evaluation and verification of the Seeplex Diarrhea-V ACE assay for simultaneous detection of adenovirus, rotavirus, and norovirus genogroups I and II in clinical stool specimens. . J Clin Microbiol 49:, 3154–3162. [CrossRef][PubMed]
    [Google Scholar]
  21. Hoffmann S., Batz M. B., Morris J. G. Jr. ( 2012;). Annual cost of illness and quality-adjusted life year losses in the United States due to 14 foodborne pathogens. . J Food Prot 75:, 1292–1302. [CrossRef][PubMed]
    [Google Scholar]
  22. Johnson E. H., Windsor J. J., Clark C. G.. ( 2004;). Emerging from obscurity: biological, clinical, and diagnostic aspects of Dientamoeba fragilis. . Clin Microbiol Rev 17:, 553–570. [CrossRef][PubMed]
    [Google Scholar]
  23. Kahlau P., Malecki M., Schildgen V., Schulz C., Winterfeld I., Messler S., Mattner F., Schildgen O.. ( 2013;). Utility of two novel multiplexing assays for the detection of gastrointestinal pathogens – a first experience. . Springerplus 2:, 106. [CrossRef][PubMed]
    [Google Scholar]
  24. Kaltsas A., Simon M., Unruh L. H., Son C., Wroblewski D., Musser K. A., Sepkowitz K., Babady N. E., Kamboj M.. ( 2012;). Clinical and laboratory characteristics of Clostridium difficile infection in patients with discordant diagnostic test results. . J Clin Microbiol 50:, 1303–1307. [CrossRef][PubMed]
    [Google Scholar]
  25. Koziel M., Kiely R., Blake L., O’Callaghan I., Corcoran G. D., Lucey B., Sleator R. D.. ( 2013;). Improved detection of bacterial pathogens in patients presenting with gastroenteritis by use of the EntericBio real-time Gastro Panel I assay. . J Clin Microbiol 51:, 2679–2685. [CrossRef][PubMed]
    [Google Scholar]
  26. Lagacé-Wiens P. R., VanCaeseele P. G., Koschik C.. ( 2006;). Dientamoeba fragilis: an emerging role in intestinal disease. . CMAJ 175:, 468–469. [CrossRef][PubMed]
    [Google Scholar]
  27. Lambertz S. T., Nilsson C., Hallanvuo S., Lindblad M.. ( 2008;). Real-time PCR method for detection of pathogenic Yersinia enterocolitica in food. . Appl Environ Microbiol 74:, 6060–6067. [CrossRef][PubMed]
    [Google Scholar]
  28. Leslie J. L., Cohen S. H., Solnick J. V., Polage C. R.. ( 2012;). Role of fecal Clostridium difficile load in discrepancies between toxin tests and PCR: is quantitation the next step in C. difficile testing. ? Eur J Clin Microbiol Infect Dis 31:, 3295–3299. [CrossRef][PubMed]
    [Google Scholar]
  29. Lopman B. A., Reacher M. H., Vipond I. B., Hill D., Perry C., Halladay T., Brown D. W., Edmunds W. J., Sarangi J.. ( 2004;). Epidemiology and cost of nosocomial gastroenteritis, Avon, England, 2002–2003. . Emerg Infect Dis 10:, 1827–1834. [CrossRef][PubMed]
    [Google Scholar]
  30. McAuliffe G. N., Anderson T. P., Stevens M., Adams J., Coleman R., Mahagamasekera P., Young S., Henderson T., Hofmann M.. & other authors ( 2013;). Systematic application of multiplex PCR enhances the detection of bacteria, parasites, and viruses in stool samples. . J Infect 67:, 122–129. [CrossRef][PubMed]
    [Google Scholar]
  31. Mengelle C., Mansuy J. M., Prere M. F., Groteau E., Claudet I., Kamar N., Huynh A., Plat G., Benand M.. & other authors ( 2013;). Simultaneous detection of gastrointestinal pathogens with a multiplex Luminex-based molecular assay in stool samples from diarrhoeic patients. . Clin Microbiol Infect doi:10.1111/1469-0691.12255 [Epub ahead of print]. [CrossRef][PubMed]
    [Google Scholar]
  32. Naaber P., Štšepetova J., Smidt I., Rätsep M., Kõljalg S., Lõivukene K., Jaanimäe L., Löhr I. H., Natås O. B.. & other authors ( 2011;). Quantification of Clostridium difficile in antibiotic-associated-diarrhea patients. . J Clin Microbiol 49:, 3656–3658. [CrossRef][PubMed]
    [Google Scholar]
  33. Navidad J. F., Griswold D. J., Gradus M. S., Bhattacharyya S.. ( 2013;). Evaluation of Luminex xTAG gastrointestinal pathogen analyte-specific reagents for high-throughput, simultaneous detection of bacteria, viruses, and parasites of clinical and public health importance. . J Clin Microbiol 51:, 3018–3024. [CrossRef][PubMed]
    [Google Scholar]
  34. O’Leary J., Corcoran D., Lucey B.. ( 2009;). Comparison of the EntericBio multiplex PCR system with routine culture for detection of bacterial enteric pathogens. . J Clin Microbiol 47:, 3449–3453. [CrossRef][PubMed]
    [Google Scholar]
  35. Roberts J. A., Upton P. A., Azene G.. ( 2000;). Escherichia coli O157 : H7; an economic assessment of an outbreak. . J Public Health Med 22:, 99–107. [CrossRef][PubMed]
    [Google Scholar]
  36. Schuurman T., de Boer R. F., van Zanten E., van Slochteren K. R., Scheper H. R., Dijk-Alberts B. G., Möller A. V. M., Kooistra-Smid A. M. D.. ( 2007;). Feasibility of a molecular screening method for detection of Salmonella enterica and Campylobacter jejuni in a routine community-based clinical microbiology laboratory. . J Clin Microbiol 45:, 3692–3700. [CrossRef][PubMed]
    [Google Scholar]
  37. Stark D., Al-Qassab S. E., Barratt J. L. N., Stanley K., Roberts T., Marriott D., Harkness J., Ellis J. T.. ( 2011;). Evaluation of multiplex tandem real-time PCR for detection of Cryptosporidium spp., Dientamoeba fragilis, Entamoeba histolytica, and Giardia intestinalis in clinical stool samples. . J Clin Microbiol 49:, 257–262. [CrossRef][PubMed]
    [Google Scholar]
  38. STEC Workshop Reporting Group ( 2012;). Experiences from the Shiga toxin-producing Escherichia coli O104 : H4 outbreak in Germany and research needs in the field, Berlin, 28–29 November 2011. . Euro Surveill 17:, ii:20091. [CrossRef]
    [Google Scholar]
  39. Tam C. C., Rodrigues L. C., Viviani L., Dodds J. P., Evans M. R., Hunter P. R., Gray J. J., Letley L. H., Rait G.. & other authors ( 2012;). Longitudinal study of infectious intestinal disease in the UK (IID2 study): incidence in the community and presenting to general practice. . Gut 61:, 69–77. [CrossRef][PubMed]
    [Google Scholar]
  40. ten Hove R. J., van Esbroeck M., Vervoort T., van den Ende J., van Lieshout L., Verweij J. J.. ( 2009;). Molecular diagnostics of intestinal parasites in returning travellers. . Eur J Clin Microbiol Infect Dis 28:, 1045–1053. [CrossRef][PubMed]
    [Google Scholar]
  41. Verweij J. J., Blangé R. A., Templeton K., Schinkel J., Brienen E. A. T., van Rooyen M. A., van Lieshout L., Polderman A. M.. ( 2004;). Simultaneous detection of Entamoeba histolytica, Giardia lamblia, and Cryptosporidium parvum in fecal samples by using multiplex real-time PCR. . J Clin Microbiol 42:, 1220–1223. [CrossRef][PubMed]
    [Google Scholar]
  42. Vonberg R. P., Reichardt C., Behnke M., Schwab F., Zindler S., Gastmeier P. J.. ( 2008;). Cost of nosocomial Clostridium difficile-associated diarrhoea. . Hosp Infect 70:, 15–20. [CrossRef]
    [Google Scholar]
  43. Wessels E., Rusman L. G., van Bussel M. J. A. W. M., Claas E. C. J.. ( 2014;). Added value of multiplex Luminex Gastrointestinal Pathogen Panel (xTAG® GPP) testing in the diagnosis of infectious gastroenteritis. . Clin Microbiol Infect 20:, O182–O187. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.074773-0
Loading
/content/journal/jmm/10.1099/jmm.0.074773-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error