1887

Abstract

An experiment was conducted to compare the impact of antimicrobial treatments on the susceptibility of , and , and on the diversity of broiler microbiota. Specific-pathogen-free chickens were first orally inoculated with strains of and . Birds were then orally treated with recommended doses of oxytetracycline, sulfadimethoxine/trimethoprim, amoxicillin or enrofloxacin. Faecal samples were collected before, during and after antimicrobial treatment. The susceptibility of , and strains isolated on supplemented or non-supplemented media was studied and PCR-capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) profiles of the gut microbiota were analysed. Enrofloxacin-resistant were selected in the enrofloxacin-treated group and showed the Thr86Ile mutation in the gene. Acquisition of the gene in isolates was significantly more frequent in birds given oxytetracycline. No impact of amoxicillin treatment on the susceptibility of could be detected. Ampicillin- and sulfadimethoxine/trimethoprim-resistant were selected in amoxicillin-treated broilers, but no selection of the inoculated vancomycin-resistant could be detected, although it was also resistant to tetracycline and sulfadimethoxine/trimethoprim. PCR-CE-SSCP revealed significant variations in a few peaks in treated birds as compared with non-treated chickens. In conclusion, antimicrobial treatments perturbed chicken gut microbiota, and certain antimicrobial treatments selected or co-selected resistant strains of and .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.074476-0
2014-11-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/11/1552.html?itemId=/content/journal/jmm/10.1099/jmm.0.074476-0&mimeType=html&fmt=ahah

References

  1. ANSES ( 2010;). FARM 2007–2008. French Antimicrobial Resistance Monitoring Program for Bacteria of Animal Origin. Report 2007–2008. . https://www.anses.fr/sites/default/files/documents/SANT-Ra-FARM2008.pdf
  2. Avrain L., Vernozy-Rozand C., Kempf I.. ( 2004;). Evidence for natural horizontal transfer of tetO gene between Campylobacter jejuni strains in chickens. . J Appl Microbiol 97:, 134–140. [CrossRef][PubMed]
    [Google Scholar]
  3. CA-SFM ( 2010;). Comité de l'antibiogramme de la société française de microbiologie. Recommandations 2010 (in French). . http://www.sfm-microbiologie.org/
  4. Chauvin C., Clement C., Bruneau M., Pommeret D.. ( 2007;). Time-patterns of antibiotic exposure in poultry production – a Markov chains exploratory study of nature and consequences. . Prev Vet Med 80:, 230–240. [CrossRef][PubMed]
    [Google Scholar]
  5. CLSI ( 2008;). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Approved Standard, 3rd edn, M31-A3. . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  6. Delbès C., Moletta R., Godon J.. ( 2001;). Bacterial and archaeal 16S rDNA and 16S rRNA dynamics during an acetate crisis in an anaerobic digestor ecosystem. . FEMS Microbiol Ecol 35:, 19–26. [CrossRef][PubMed]
    [Google Scholar]
  7. Denis M., Soumet C., Rivoal K., Ermel G., Blivet D., Salvat G., Colin P.. ( 1999;). Development of a m-PCR assay for simultaneous identification of Campylobacter jejuni and C. coli. . Lett Appl Microbiol 29:, 406–410. [CrossRef][PubMed]
    [Google Scholar]
  8. Depardieu F., Perichon B., Courvalin P.. ( 2004;). Detection of the van alphabet and identification of enterococci and staphylococci at the species level by multiplex PCR. . J Clin Microbiol 42:, 5857–5860. [CrossRef][PubMed]
    [Google Scholar]
  9. Dheilly A., Bouder A., Le Devendec L., Hellard G., Kempf I.. ( 2011;). Clinical and microbial efficacy of antimicrobial treatments of experimental avian colibacillosis. . Vet Microbiol 149:, 422–429. [CrossRef][PubMed]
    [Google Scholar]
  10. Dheilly A., Le Devendec L., Mourand G., Bouder A., Jouy E., Kempf I.. ( 2012;). Resistance gene transfer during treatments for experimental avian colibacillosis. . Antimicrob Agents Chemother 56:, 189–196. [CrossRef][PubMed]
    [Google Scholar]
  11. Diarra M. S., Silversides F. G., Diarrassouba F., Pritchard J., Masson L., Brousseau R., Bonnet C., Delaquis P., Bach S.. & other authors ( 2007;). Impact of feed supplementation with antimicrobial agents on growth performance of broiler chickens, Clostridium perfringens and Enterococcus counts, and antibiotic resistance phenotypes and distribution of antimicrobial resistance determinants in Escherichia coli isolates. . Appl Environ Microbiol 73:, 6566–6576. [CrossRef][PubMed]
    [Google Scholar]
  12. El-Shibiny A., Connerton P. L., Connerton I. F.. ( 2007;). Campylobacter succession in broiler chickens. . Vet Microbiol 125:, 323–332. [CrossRef][PubMed]
    [Google Scholar]
  13. Fairchild A. S., Smith J. L., Idris U., Lu J., Sanchez S., Purvis L. B., Hofacre C., Lee M. D.. ( 2005;). Effects of orally administered tetracycline on the intestinal community structure of chickens and on tet determinant carriage by commensal bacteria and Campylobacter jejuni. . Appl Environ Microbiol 71:, 5865–5872. [CrossRef][PubMed]
    [Google Scholar]
  14. Fantin B., Duval X., Massias L., Alavoine L., Chau F., Retout S., Andremont A., Mentré F.. ( 2009;). Ciprofloxacin dosage and emergence of resistance in human commensal bacteria. . J Infect Dis 200:, 390–398. [CrossRef][PubMed]
    [Google Scholar]
  15. Griggs D. J., Johnson M. M., Frost J. A., Humphrey T., Jørgensen F., Piddock L. J. V.. ( 2005;). Incidence and mechanism of ciprofloxacin resistance in Campylobacter spp. isolated from commercial poultry flocks in the United Kingdom before, during, and after fluoroquinolone treatment. . Antimicrob Agents Chemother 49:, 699–707. [CrossRef][PubMed]
    [Google Scholar]
  16. Hunter P. R., Gaston M. A.. ( 1988;). Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. . J Clin Microbiol 26:, 2465–2466.[PubMed]
    [Google Scholar]
  17. Inglis G. D., Morck D. W., McAllister T. A., Entz T., Olson M. E., Yanke L. J., Read R. R.. ( 2006;). Temporal prevalence of antimicrobial resistance in Campylobacter spp. from beef cattle in Alberta feedlots. . Appl Environ Microbiol 72:, 4088–4095. [CrossRef][PubMed]
    [Google Scholar]
  18. Julien C., Marden J. P., Bonnefont C., Moncoulon R., Auclair E., Monteils V., Bayourthe C.. ( 2010;). Effects of varying proportions of concentrates on ruminal-reducing power and bacterial community structure in dry dairy cows fed hay-based diets. . Animal 4:, 1641–1646. [CrossRef][PubMed]
    [Google Scholar]
  19. Leblanc-Maridor M., Beaudeau F., Seegers H., Denis M., Belloc C.. ( 2011a;). Rapid identification and quantification of Campylobacter coli and Campylobacter jejuni by real-time PCR in pure cultures and in complex samples. . BMC Microbiol 11:, 113. [CrossRef][PubMed]
    [Google Scholar]
  20. Leblanc-Maridor M., Garénaux A., Beaudeau F., Chidaine B., Seegers H., Denis M., Belloc C.. ( 2011b;). Quantification of Campylobacter spp. in pig feces by direct real-time PCR with an internal control of extraction and amplification. . J Microbiol Methods 85:, 53–61. [CrossRef][PubMed]
    [Google Scholar]
  21. Liang K. Y., Zeger S. L.. ( 1986;). Longitudinal data analysis using generalized linear models. . Biometrika 73:, 13–22. [CrossRef]
    [Google Scholar]
  22. Looft T., Johnson T. A., Allen H. K., Bayles D. O., Alt D. P., Stedtfeld R. D., Sul W. J., Stedtfeld T. M., Chai B.. & other authors ( 2012;). In-feed antibiotic effects on the swine intestinal microbiome. . Proc Natl Acad Sci U S A 109:, 1691–1696. [CrossRef][PubMed]
    [Google Scholar]
  23. Martins da Costa P., Bica A., Vaz-Pires P., Bernardo F.. ( 2008;). Effects of antimicrobial treatment on selection of resistant Escherichia coli in broiler fecal flora. . Microb Drug Resist 14:, 299–306. [CrossRef][PubMed]
    [Google Scholar]
  24. Martins da Costa P., Belo A., Gonçalves J., Bernardo F.. ( 2009;). Field trial evaluating changes in prevalence and patterns of antimicrobial resistance among Escherichia coli and Enterococcus spp. isolated from growing broilers medicated with enrofloxacin, apramycin and amoxicillin. . Vet Microbiol 139:, 284–292. [CrossRef][PubMed]
    [Google Scholar]
  25. Michelland R. J., Combes S., Monteils V., Cauquil L., Gidenne T., Fortun-Lamothe L.. ( 2011;). Rapid adaptation of the bacterial community in the growing rabbit caecum after a change in dietary fibre supply. . Animal 5:, 1761–1768. [CrossRef][PubMed]
    [Google Scholar]
  26. Peu P., Brugère H., Pourcher A. M., Kérourédan M., Godon J. J., Delgenès J. P., Dabert P.. ( 2006;). Dynamics of a pig slurry microbial community during anaerobic storage and management. . Appl Environ Microbiol 72:, 3578–3585. [CrossRef][PubMed]
    [Google Scholar]
  27. Pissavin C., Burel C., Gabriel I., Beven V., Mallet S., Maurice R., Queguiner M., Lessire M., Fravalo P.. ( 2012;). Capillary electrophoresis single-strand conformation polymorphism for the monitoring of gastrointestinal microbiota of chicken flocks. . Poult Sci 91:, 2294–2304. [CrossRef][PubMed]
    [Google Scholar]
  28. Poole T. L., Suchodolski J. S., Callaway T. R., Farrow R. L., Loneragan G. H., Nisbet D. J.. ( 2013;). The effect of chlortetracycline on faecal microbial populations in growing swine. . J Global Antimic Resist 1:, 171–174. [CrossRef]
    [Google Scholar]
  29. Roberts M. C., Pang Y., Riley D. E., Hillier S. L., Berger R. C., Krieger J. N.. ( 1993;). Detection of Tet M and Tet O tetracycline resistance genes by polymerase chain reaction. . Mol Cell Probes 7:, 387–393. [CrossRef][PubMed]
    [Google Scholar]
  30. Simpson E. H.. ( 1949;). Measurement of diversity. . Nature 163:, 688. [CrossRef]
    [Google Scholar]
  31. Tenover F. C., Williams S., Gordon K. P., Nolan C., Plorde J. J.. ( 1985;). Survey of plasmids and resistance factors in Campylobacter jejuni and Campylobacter coli. . Antimicrob Agents Chemother 27:, 37–41. [CrossRef][PubMed]
    [Google Scholar]
  32. Waché Y. J., Valat C., Postollec G., Bougeard S., Burel C., Oswald I. P., Fravalo P.. ( 2009;). Impact of deoxynivalenol on the intestinal microflora of pigs. . Int J Mol Sci 10:, 1–17. [CrossRef][PubMed]
    [Google Scholar]
  33. Zeitouni S., Kempf I.. ( 2011;). Fitness cost of fluoroquinolone resistance in Campylobacter coli and Campylobacter jejuni. . Microb Drug Resist 17:, 171–179. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.074476-0
Loading
/content/journal/jmm/10.1099/jmm.0.074476-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error