1887

Abstract

The use of 16S rRNA gene sequences for microbial identification in clinical microbiology is accepted widely, and requires databases and algorithms. We compared a new research database containing curated 16S rRNA gene sequences in combination with the (lowest common ancestor) algorithm (RDB-LCA) to a commercially available 16S rDNA Centroid approach. We used 1025 bacterial isolates characterized by biochemistry, matrix-assisted laser desorption/ionization time-of-flight MS and 16S rDNA sequencing. Nearly 80 % of isolates were identified unambiguously at the species level by both classification platforms used. The remaining isolates were mostly identified correctly at the genus level due to the limited resolution of 16S rDNA sequencing. Discrepancies between both 16S rDNA platforms were due to differences in database content and the algorithm used, and could amount to up to 10.5 %. Up to 1.4 % of the analyses were found to be inconclusive. It is important to realize that despite the overall good performance of the pipelines for analysis, some inconclusive results remain that require additional in-depth analysis performed using supplementary methods.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.074377-0
2014-10-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/10/1311.html?itemId=/content/journal/jmm/10.1099/jmm.0.074377-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. . J Mol Biol 215:, 403–410. [CrossRef][PubMed]
    [Google Scholar]
  2. Clarridge J. E. III. ( 2004;). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. . Clin Microbiol Rev 17:, 840–862. [CrossRef][PubMed]
    [Google Scholar]
  3. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T.. & other authors ( 2009;). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. . Nucleic Acids Res 37: (Database issue), D141–D145. [CrossRef][PubMed]
    [Google Scholar]
  4. Conville P. S., Murray P. R., Zelazny A. M.. ( 2010;). Evaluation of the integrated database network system (IDNS) SmartGene software for analysis of 16S rRNA gene sequences for identification of Nocardia species. . J Clin Microbiol 48:, 2995–2998. [CrossRef][PubMed]
    [Google Scholar]
  5. Dahllöf I., Baillie H., Kjelleberg S.. ( 2000;). rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. . Appl Environ Microbiol 66:, 3376–3380. [CrossRef][PubMed]
    [Google Scholar]
  6. DeSantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E. L., Keller K., Huber T., Dalevi D., Hu P., Andersen G. L.. ( 2006;). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. . Appl Environ Microbiol 72:, 5069–5072. [CrossRef][PubMed]
    [Google Scholar]
  7. Greisen K., Loeffelholz M., Purohit A., Leong D.. ( 1994;). PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. . J Clin Microbiol 32:, 335–351.[PubMed]
    [Google Scholar]
  8. Harel D., Tarjan R.. ( 1984;). Fast algorithms for finding nearest common ancestors. . SIAM J Comput 13:, 338–355. [CrossRef]
    [Google Scholar]
  9. Helal M., Kong F., Chen S. C., Bain M., Christen R., Sintchenko V.. ( 2011;). Defining reference sequences for Nocardia species by similarity and clustering analyses of 16S rRNA gene sequence data. . PLoS ONE 6:, e19517. [CrossRef][PubMed]
    [Google Scholar]
  10. Hwang S. M., Kim M. S., Park K. U., Song J., Kim E. C.. ( 2011;). Tuf gene sequence analysis has greater discriminatory power than 16S rRNA sequence analysis in identification of clinical isolates of coagulase-negative staphylococci. . J Clin Microbiol 49:, 4142–4149. [CrossRef][PubMed]
    [Google Scholar]
  11. Janda J. M., Abbott S. L.. ( 2007;). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. . J Clin Microbiol 45:, 2761–2764. [CrossRef][PubMed]
    [Google Scholar]
  12. Maughan H., Van der Auwera G.. ( 2011;). Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading. . Infect Genet Evol 11:, 789–797. [CrossRef][PubMed]
    [Google Scholar]
  13. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F. O.. ( 2013;). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. . Nucleic Acids Res 41: (Database issue), D590–D596. [CrossRef][PubMed]
    [Google Scholar]
  14. Rajendhran J., Gunasekaran P.. ( 2011;). Microbial phylogeny and diversity: small subunit ribosomal RNA sequence analysis and beyond. . Microbiol Res 166:, 99–110. [CrossRef][PubMed]
    [Google Scholar]
  15. Schlaberg R., Simmon K. E., Fisher M. A.. ( 2012;). A systematic approach for discovering novel, clinically relevant bacteria. . Emerg Infect Dis 18:, 422–430. [CrossRef][PubMed]
    [Google Scholar]
  16. Simmon K. E., Croft A. C., Petti C. A.. ( 2006;). Application of SmartGene IDNS software to partial 16S rRNA gene sequences for a diverse group of bacteria in a clinical laboratory. . J Clin Microbiol 44:, 4400–4406. [CrossRef][PubMed]
    [Google Scholar]
  17. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  18. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A., Kämpfer P., Maiden M. C., Nesme X., Rosselló-Mora R., Swings J.. & other authors ( 2002;). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52:, 1043–1047. [CrossRef][PubMed]
    [Google Scholar]
  19. Woo P. C., Ng K. H., Lau S. K., Yip K. T., Fung A. M., Leung K. W., Tam D. M., Que T. L., Yuen K. Y.. ( 2003;). Usefulness of the MicroSeq 500 16S ribosomal DNA-based bacterial identification system for identification of clinically significant bacterial isolates with ambiguous biochemical profiles. . J Clin Microbiol 41:, 1996–2001. [CrossRef][PubMed]
    [Google Scholar]
  20. Woo P. C., Lau S. K., Teng J. L., Tse H., Yuen K. Y.. ( 2008;). Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. . Clin Microbiol Infect 14:, 908–934. [CrossRef][PubMed]
    [Google Scholar]
  21. Zbinden A., Köhler N., Bloemberg G. V.. ( 2011;). recA-based PCR assay for accurate differentiation of Streptococcus pneumoniae from other viridans streptococci. . J Clin Microbiol 49:, 523–527. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.074377-0
Loading
/content/journal/jmm/10.1099/jmm.0.074377-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error