1887

Abstract

This is the first study, to our knowledge, performed on a significant number of strains (79 carbapenem-resistant and 84 carbapenem-resistant non-fermenting Gram-negative rods, GNRs) isolated from tissue samples taken from patients in the intensive care units of two large hospitals in Bucharest, Romania, between 2011 and 2012. The results revealed a high prevalence and great diversity of carbapenemase genes (CRG), in both fermenting and non-fermenting Gram-negative carbapenem-resistant strains. The molecular screening of carbapenem-resistant GNRs revealed the presence of worldwide-distributed CRGs (i.e. and in and , , , , and in non-fermenting GNRs), reflecting the rapid evolution and spread of carbapenemase producers, particularly in hospitals. Rapid identification of the colonized or infected patients is required, as are epidemiological investigations to establish the local or imported origin of the respective strains.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.074039-0
2014-10-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/10/1303.html?itemId=/content/journal/jmm/10.1099/jmm.0.074039-0&mimeType=html&fmt=ahah

References

  1. Afzal-Shah M., Woodford N., Livermore D. M. 2001; Characterization of OXA-25, OXA-26, 0XA-27, molecular class D β-lactamases with carbapenem resistance in clinical isolates of Acinetobacter baumannii . 45:583–589
    [Google Scholar]
  2. Bogaerts P., Naas T., El Garch F., Cuzon G., Deplano A., Delaire T., Huang T. D., Lissoir B., Nordmann P., Glupczynski Y. 2010; GES extended-spectrum β-lactamases in Acinetobacter baumannii isolates in Belgium. Antimicrob Agents Chemother 54:4872–4878 [View Article][PubMed]
    [Google Scholar]
  3. Bonnin R. A., Poirel L., Licker M., Nordmann P. 2011; Genetic diversity of carbapenem-hydrolysing β-lactamases in Acinetobacter baumannii from Romanian hospitals. Clin Microbiol Infect 17:1524–1528 [View Article][PubMed]
    [Google Scholar]
  4. CDC 2013; Vital signs: carbapenem-resistant Enterobacteriaceae . MMWR Morb Mortal Wkly Rep 62:165–170 http://www.cdc.gov/mmwr[PubMed]
    [Google Scholar]
  5. Cicek A. C., Saral A., Iraz M., Ceylan A., Duzgun A. O., Peleg A. Y., Sandalli C. 2013; OXA- and GES-type β-lactamases predominate in extensively drug-resistant Acinetobacter baumannii isolates from a Turkish University Hospital. Clin Microbiol Infect 20:410–415 [View Article][PubMed]
    [Google Scholar]
  6. De Champs C., Poirel L., Bonnet R., Sirot D., Chanal C., Sirot J., Nordmann P. 2002; Prospective survey of β-lactamases produced by ceftazidime-resistant Pseudomonas aeruginosa isolated in a French hospital in 2000. Antimicrob Agents Chemother 46:3031–3034 [View Article][PubMed]
    [Google Scholar]
  7. Fouad M., Attia A. S., Tawakkol W. M., Hashem A. M. 2013; Emergence of carbapenem-resistant Acinetobacter baumannii harboring the OXA-23 carbapenemase in intensive care units of Egyptian hospitals. Int J Infect Dis 31:237–241 [View Article][PubMed]
    [Google Scholar]
  8. Girlich D., Naas T., Nordmann P. 2004; Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa . Antimicrob Agents Chemother 17:1252–1254 [View Article][PubMed]
    [Google Scholar]
  9. Grundmann H., Livermore D. M., Giske C. G., Canton R., Rossolini G. M., Campos J., Vatopoulos A., Gniadkowski M., Toth A. other authors 2010; Carbapenem-non-susceptible Enterobacteriaceae in Europe: conclusions from a meeting of national experts. Euro Surveill 15:19711[PubMed]
    [Google Scholar]
  10. Lauretti L., Riccio M. L., Mazzariol A., Cornaglia G., Amicosante G., Fontana R., Rossolini G. M. 1999; Cloning and characterization of bla VIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother 43:1584–1590[PubMed]
    [Google Scholar]
  11. Livermore D. M. 2012; Current epidemiology and growing resistance of Gram-negative pathogens. Korean J Intern Med 27:128–142 [View Article][PubMed]
    [Google Scholar]
  12. Livermore D. M., Woodford N. 2006; The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter . Trends Microbiol 14:413–420 [View Article][PubMed]
    [Google Scholar]
  13. Magiorakos A.-P., Srinivasan A., Carey R. B., Carmeli Y., Falagas M. E., Giske C. G., Harbarth S., Hindler J. F., Kahlmeter G. & other authors 2011; Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281 [CrossRef]
    [Google Scholar]
  14. Marra A. R., Pereira C. A. P., Gales A. C., Menezes L. C., Cal R. G. R., de Souza J. M. A., Edmond M. B., Faro C., Wey S. B. 2006; Bloodstream infections with metallo-β-lactamase-producing Pseudomonas aeruginosa: epidemiology, microbiology, and clinical outcomes. Antimicrob Agents Chemother 50:388–390 [View Article][PubMed]
    [Google Scholar]
  15. Marsik F. J., Nambiar S. 2011; Review of carbapenemases and AmpC-beta lactamases. Pediatr Infect Dis J 30:1094–1095 [View Article][PubMed]
    [Google Scholar]
  16. Mercuri P. S., Ishii Y., Ma L., Rossolini G. M., Luzzaro F., Amicosante G., Franceschini N., Frere J. M., Galleni M. 2002; Clonal diversity and metallo-β-lactamase production in clinical isolates of Stenotrophomonas maltophilia . Microb Drug Resist 8:193–200 [View Article][PubMed]
    [Google Scholar]
  17. Mereuta A. I., Badescu A. C., Dorneanu O. S., Iancu L. S., Tuchilus C. G. 2013; Spread of VIM-2 metallo-beta-lactamase in Pseudomonas aeruginosa and Acinetobacter baumannii clinical isolates from Iasi, Romania. Revista Romana Medicina Laborator 21:389–395
    [Google Scholar]
  18. Naas T., Benaoudia F., Massuard S., Nordmann P. 2000; Integron-located VEB-1 extended-spectrum β-lactamase gene in a Proteus mirabilis clinical isolate from Vietnam. J Antimicrob Chemother 46:703–711 [View Article][PubMed]
    [Google Scholar]
  19. Niranjan D. K., Singh N. P., Manchanda V., Rai S., Kaur I. R. 2013; Multiple carbapenem hydrolyzing genes in clinical isolates of Acinetobacter baumannii . Indian J Med Microbiol 31:237–241 [View Article][PubMed]
    [Google Scholar]
  20. Nordmann P., Poirel L. 2002; Emerging carbapenemases in Gram-negative aerobes. Clin Microbiol Infect 8:321–331 [View Article][PubMed]
    [Google Scholar]
  21. Nordmann P., Naas T., Poirel L. 2011; Global spread of carbapenemase-producing Enterobacteriaceae . Emerg Infect Dis 17:1791–1798 [View Article][PubMed]
    [Google Scholar]
  22. Partridge S. R., Zong Z., Iredell J. R. 2011; Recombination in IS26 and Tn2 in the evolution of multiresistance regions carrying blaCTX-M-15 on conjugative IncF plasmids from Escherichia coli . Antimicrob Agents Chemother 55:4971–4978 [View Article][PubMed]
    [Google Scholar]
  23. Patel G., Bonomo R. A. 2013; “Stormy waters ahead”: global emergence of carbapenemases. Front Microbiol 4:48 [View Article][PubMed]
    [Google Scholar]
  24. Peleg A. Y., Franklin C., Bell J., Spelman D. W. 2004; Emergence of IMP-4 metallo-β-lactamase in a clinical isolate from Australia. J Antimicrob Chemother 54:699–700 [View Article][PubMed]
    [Google Scholar]
  25. Perez F., Van Duin D. 2013; Carbapenem-resistant Enterobacteriaceae: a menace to our most vulnerable patients. Cleve Clin J Med 80:225–233 [View Article][PubMed]
    [Google Scholar]
  26. Pogue J. M., Mann T., Barber K. E., Kaye K. S. 2013; Carbapenem-resistant Acinetobacter baumannii: epidemiology, surveillance and management. Expert Rev Anti Infect Ther 11:383–393 [View Article][PubMed]
    [Google Scholar]
  27. Poirel L., Naas T., Nicolas D., Collet L., Bellais S., Cavallo J. D., Nordmann P. 2000; Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother 44:891–897 [View Article][PubMed]
    [Google Scholar]
  28. Poirel L., Magalhaes M., Lopes M., Nordmann P. 2004; Molecular analysis of metallo-β-lactamase gene bla(SPM-1)-surrounding sequences from disseminated Pseudomonas aeruginosa isolates in Recife, Brazil. Antimicrob Agents Chemother 48:1406–1409 [View Article][PubMed]
    [Google Scholar]
  29. Poirel L., Walsh T. R., Cuvillier V., Nordmann P. 2011; Multiplex PCR for detection of acquired carbapenemase genes. 70:119–123
    [Google Scholar]
  30. Pournaras S., Tsakris A., Maniati M., Tzouvelekis L. S., Maniatis A. N. 2002; Novel variant (bla VIM-4) of the metallo-β-lactamase gene bla VIM-1 in a clinical strain of Pseudomonas aeruginosa . Antimicrob Agents Chemother 46:4026–4028 [View Article][PubMed]
    [Google Scholar]
  31. Queenan A. M., Bush K. 2007; Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev 20:440–458 [View Article][PubMed]
    [Google Scholar]
  32. Sardelic S., Bedenic B., Colinon-Dupuich C., Orhanovic S., Bosnjak Z., Plecko V., Cournoyer B., Rossolini M. G. 2012; Infrequent Finding of Metallo-β-Lactamase VIM-2 in Carbapenem-Resistant Pseudomonas aeruginosa Strains from Croatia. Antimicrob Agents Chemother 56:2746–2749 [CrossRef]
    [Google Scholar]
  33. Shahcheraghi F., Abbasalipour M., Feizabadi M., Ebrahimipour G., Akbari N. 2011; Isolation and genetic characterization of metallo-β-lactamase and carbapenamase producing strains of Acinetobacter baumannii from patients at Tehran hospitals. Iran J Microbiol 3:68–74 [View Article][PubMed]
    [Google Scholar]
  34. Silva F. M., Cormo M. S., Silbert S., Gales C. 2011; SPM-1 producing Pseudomonas aeruginosa: analysis of the ancestor relationship using Multilocus Sequence Typing, Pulsed-Field Gel Electrophoresis and Automated Ribotyping. Microbiol Drug Resistance 17:215–220 [CrossRef]
    [Google Scholar]
  35. Székely E., Damjanova I., Jánvári L., Vas K. E., Molnár S., Bilca D. V., Lőrinczi L. K., Tóth A. 2013; First description of bla NDM-1, bla OXA-48, bla OXA-181 producing Enterobacteriaceae strains in Romania. Int J Med Microbiol 303:697–700 [View Article][PubMed]
    [Google Scholar]
  36. Tzouvelekis L. S., Markogiannakis A., Psichogiou M., Tassios P. T., Daikos G. L. 2012; Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev 25:682–707 [View Article][PubMed]
    [Google Scholar]
  37. Villalón P., Valdezate S., Medina-Pascual M. J., Carrasco G., Vindel A., Saez-Nieto J. A. 2013; Epidemiology of the Acinetobacter-derived cephalosporinase, carbapenem-hydrolysing oxacillinase and metallo-β-lactamase genes, and of common insertion sequences, in epidemic clones of Acinetobacter baumannii from Spain. J Antimicrob Chemother 68:550–553 [View Article][PubMed]
    [Google Scholar]
  38. Woodford N., Ellington M. J., Coelho J. M., Turton J. F., Ward M. E., Brown S., Amyes S. G., Livermore D. M. 2006; Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp.. Int J Antimicrob Agents 27:351–353 [View Article][PubMed]
    [Google Scholar]
  39. Yong D., Choi Y. S., Roh K. H., Kim C. K., Park Y. H., Yum J. H., Lee K., Chong Y. 2006; Increasing prevalence and diversity of metallo-β-lactamases in Pseudomonas spp., Acinetobacter spp., and Enterobacteriaceae from Korea. Antimicrob Agents Chemother 50:1884–1886 [View Article][PubMed]
    [Google Scholar]
  40. Zavascki A. P., Gaspareto P. B., Martins A. F., Gonçalves A. L., Barth A. L. 2005; Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing SPM-1 metallo-β-lactamase in a teaching hospital in southern Brazil. J Antimicrob Chemother 56:1148–1151 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.074039-0
Loading
/content/journal/jmm/10.1099/jmm.0.074039-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error