Highly conjugative IncX4 plasmids carrying in from humans and food animals Free

Abstract

This study investigated the prevalence of IncX plasmid subtypes in commensal and pathogenic isolates and the biological features of the IncX4 subtype. Two hundred and twenty-five isolates from multiple sources (47 chickens, 41 pigs, 30 cattle and 107 humans) obtained during the period 2006–2012 were tested for the presence of IncX1 to IncX5. Overall, the prevalence of IncX plasmids in chicken, pig, cattle and human isolates were 21.2 % (10/47), 19.5 % (8/41), 3.3 % (1/30) and 4.8 % (5/107), respectively. IncX4 was the most common subtype, followed by IncX1 and IncX3, while no IncX2 or IncX5 were found. Seven out of 16 (43.8 %) IncX4 plasmids were found to carry genes and six of them originating from different host sources (four chickens, one pig and one human) had identical or highly similar RFLP patterns. Three IncX4 plasmids carrying from different host sources were investigated further. It was found that the IncX4 plasmids had little effect on bacterial host growth parameters after their introduction to J53 recipients. Conjugation experiments demonstrated that the IncX4 plasmids could be efficiently transferred at 30–42 °C at rates which were generally 10–10-fold higher than those for the epidemic IncFII plasmid carrying (pHK01). In conclusion, the IncX plasmids are more common than previously recognized. The efficient transfer of IncX4 plasmid at different temperatures and the lack of fitness burden on bacterial hosts highlight the ability of this plasmid replicon to be an important vehicle for dissemination of antimicrobial resistance.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.074021-0
2014-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/6/835.html?itemId=/content/journal/jmm/10.1099/jmm.0.074021-0&mimeType=html&fmt=ahah

References

  1. Burmølle M., Bahl M. I., Jensen L. B., Sørensen S. J., Hansen L. H. 2008; Type 3 fimbriae, encoded by the conjugative plasmid pOLA52, enhance biofilm formation and transfer frequencies in Enterobacteriaceae strains. Microbiology 154:187–195 [View Article][PubMed]
    [Google Scholar]
  2. Carattoli A., Bertini A., Villa L., Falbo V., Hopkins K. L., Threlfall E. J. 2005; Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63:219–228 [View Article][PubMed]
    [Google Scholar]
  3. Chen L., Chavda K. D., Fraimow H. S., Mediavilla J. R., Melano R. G., Jacobs M. R., Bonomo R. A., Kreiswirth B. N. 2013; Complete nucleotide sequences of blaKPC-4- and blaKPC-5-harboring IncN and IncX plasmids from Klebsiella pneumoniae strains isolated in New Jersey. Antimicrob Agents Chemother 57:269–276 [View Article][PubMed]
    [Google Scholar]
  4. Clermont O., Christenson J. K., Denamur E., Gordon D. M. 2013; The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep 5:58–65 [View Article][PubMed]
    [Google Scholar]
  5. CLSI 2013; Performance Standards for Antimicrobial Susceptibility Testing; 23rd Informational Supplement M100–S23. Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  6. Grudniak A. M., Kraczkiewicz-Dowjat A., Wolska K. I., Wild J. 2007; Conjugal transfer of plasmid R6K γ ori minireplicon derivatives from Escherichia coli to various genera of pathogenic bacteria. Curr Microbiol 55:549–553 [View Article][PubMed]
    [Google Scholar]
  7. Ho P. L., Yip K. S., Chow K. H., Lo J. Y., Que T. L., Yuen K. Y. 2010; Antimicrobial resistance among uropathogens that cause acute uncomplicated cystitis in women in Hong Kong: a prospective multicenter study in 2006 to 2008. Diagn Microbiol Infect Dis 66:87–93 [View Article][PubMed]
    [Google Scholar]
  8. Ho P. L., Chow K. H., Lai E. L., Lo W. U., Yeung M. K., Chan J., Chan P. Y., Yuen K. Y. 2011a; Extensive dissemination of CTX-M-producing Escherichia coli with multidrug resistance to ‘critically important’ antibiotics among food animals in Hong Kong, 2008–10. J Antimicrob Chemother 66:765–768 [View Article][PubMed]
    [Google Scholar]
  9. Ho P. L., Lo W. U., Wong R. C., Yeung M. K., Chow K. H., Que T. L., Tong A. H., Bao J. Y., Lok S., Wong S. S. 2011b; Complete sequencing of the FII plasmid pHK01, encoding CTX-M-14, and molecular analysis of its variants among Escherichia coli from Hong Kong. J Antimicrob Chemother 66:752–756 [View Article][PubMed]
    [Google Scholar]
  10. Ho P. L., Lo W. U., Yeung M. K., Lin C. H., Chow K. H., Ang I., Tong A. H., Bao J. Y., Lok S., Lo J. Y. 2011c; Complete sequencing of pNDM-HK encoding NDM-1 carbapenemase from a multidrug-resistant Escherichia coli strain isolated in Hong Kong. PLoS ONE 6:e17989 [View Article][PubMed]
    [Google Scholar]
  11. Ho P.-L., Li Z., Lo W.-U., Cheung Y.-Y., Lin C.-H., Sham P.-C., Cheng V. C.-C., Ng T.-K., Que T.-L., Chow K.-H. 2012a; Identification and characterization of a novel incompatibility group X3 plasmid carrying blaNDM-1 in Enterobacteriaceae isolates with epidemiological links to multiple geographical areas in China. Emerg Micro Infect 1:e39 [View Article]
    [Google Scholar]
  12. Ho P. L., Lo W. U., Yeung M. K., Li Z., Chan J., Chow K. H., Yam W. C., Tong A. H., Bao J. Y.& other authors ( 2012b; Dissemination of pHK01-like incompatibility group IncFII plasmids encoding CTX-M-14 in Escherichia coli from human and animal sources. Vet Microbiol 158:172–179 [View Article][PubMed]
    [Google Scholar]
  13. Ho P. L., Yeung M. K., Lo W. U., Tse H., Li Z., Lai E. L., Chow K. H., To K. K., Yam W. C. 2012c; Predominance of pHK01-like incompatibility group FII plasmids encoding CTX-M-14 among extended-spectrum beta-lactamase-producing Escherichia coli in Hong Kong, 1996–2008. Diagn Microbiol Infect Dis 73:182–186 [View Article][PubMed]
    [Google Scholar]
  14. Ho P. L., Cheung Y. Y., Lo W. U., Li Z., Chow K. H., Lin C. H., Chan J. F., Cheng V. C. 2013; Molecular characterization of an atypical IncX3 plasmid pKPC-NY79 carrying blaKPC-2 in a Klebsiella pneumoniae. Curr Microbiol 67:493–498 [View Article][PubMed]
    [Google Scholar]
  15. Johnson T. J., Wannemuehler Y. M., Johnson S. J., Logue C. M., White D. G., Doetkott C., Nolan L. K. 2007; Plasmid replicon typing of commensal and pathogenic Escherichia coli isolates. Appl Environ Microbiol 73:1976–1983 [View Article][PubMed]
    [Google Scholar]
  16. Johnson T. J., Bielak E. M., Fortini D., Hansen L. H., Hasman H., Debroy C., Nolan L. K., Carattoli A. 2012; Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae. Plasmid 68:43–50 [View Article][PubMed]
    [Google Scholar]
  17. Leverstein-van Hall M. A., Dierikx C. M., Cohen Stuart J., Voets G. M., van den Munckhof M. P., van Essen-Zandbergen A., Platteel T., Fluit A. C., van de Sande-Bruinsma N.& other authors ( 2011; Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin Microbiol Infect 17:873–880 [View Article][PubMed]
    [Google Scholar]
  18. Literak I., Dolejska M., Janoszowska D., Hrusakova J., Meissner W., Rzyska H., Bzoma S., Cizek A. 2010; Antibiotic-resistant Escherichia coli bacteria, including strains with genes encoding the extended-spectrum beta-lactamase and QnrS, in waterbirds on the Baltic Sea coast of Poland. Appl Environ Microbiol 76:8126–8134 [View Article][PubMed]
    [Google Scholar]
  19. Lo W. U., Ho P. L., Chow K. H., Lai E. L., Yeung F., Chiu S. S. 2010; Fecal carriage of CTX-M-type extended-spectrum beta-lactamase-producing organisms by children and their household contacts. J Infect 60:286–292 [View Article][PubMed]
    [Google Scholar]
  20. Nhu N. T. K., Vinh H., Nga T. V. T., Stabler R., Duy P. T., Thi Minh Vien L., van Doorn H. R., Cerdeño-Tárraga A., Thomson N.& other authors ( 2010; The sudden dominance of blaCTX-M harbouring plasmids in Shigella spp. circulating in Southern Vietnam. PLoS Negl Trop Dis 4:e702 [View Article][PubMed]
    [Google Scholar]
  21. Norman A., Hansen L. H., She Q., Sørensen S. J. 2008; Nucleotide sequence of pOLA52: a conjugative IncX1 plasmid from Escherichia coli which enables biofilm formation and multidrug efflux. Plasmid 60:59–74 [View Article][PubMed]
    [Google Scholar]
  22. Overdevest I., Willemsen I., Rijnsburger M., Eustace A., Xu L., Hawkey P., Heck M., Savelkoul P., Vandenbroucke-Grauls C.& other authors ( 2011; Extended-spectrum β-lactamase genes of Escherichia coli in chicken meat and humans, The Netherlands. Emerg Infect Dis 17:1216–1222 [View Article][PubMed]
    [Google Scholar]
  23. Partridge S. R., Ellem J. A., Tetu S. G., Zong Z., Paulsen I. T., Iredell J. R. 2011; Complete sequence of pJIE143, a pir-type plasmid carrying ISEcp1-blaCTX-M-15 from an Escherichia coli ST131 isolate. Antimicrob Agents Chemother 55:5933–5935 [View Article][PubMed]
    [Google Scholar]
  24. Stokes M. O., Abuoun M., Umur S., Wu G., Partridge S. R., Mevius D. J., Coldham N. G., Fielder M. D. 2013; Complete sequence of pSAM7, an IncX4 plasmid carrying a novel blaCTX-M-14b transposition unit isolated from Escherichia coli and Enterobacter cloacae from cattle. Antimicrob Agents Chemother 57:4590–4594 [View Article][PubMed]
    [Google Scholar]
  25. Williams L. E., Wireman J., Hilliard V. C., Summers A. O. 2013; Large plasmids of Escherichia coli and Salmonella encode highly diverse arrays of accessory genes on common replicon families. Plasmid 69:36–48 [View Article][PubMed]
    [Google Scholar]
  26. Zhong X., Droesch J., Fox R., Top E. M., Krone S. M. 2012; On the meaning and estimation of plasmid transfer rates for surface-associated and well-mixed bacterial populations. J Theor Biol 294:144–152 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.074021-0
Loading
/content/journal/jmm/10.1099/jmm.0.074021-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed