1887

Abstract

Staphylococcal and streptococcal species are the most common pathogens that cause bovine mastitis. Induction of a broad-spectrum protective immunity against staphylococci and streptococci by combining multiple antigens into a single vaccine is highlighted. To develop a universal vaccine candidate, a GapC-tIsdB-TRAP (GIT) construct was generated. The GIT contained the truncated GapC from , and truncated IsdB and full-length TRAP from . The humoral and cellular immune responses elicited by GIT were evaluated in mice. Antibody levels against GIT displayed a consistent tendency with antibody levels against GapC, IsdB and TRAP. The level of IFN-γ was higher in the GIT group than in the IsdB group (<0.05), and the level of IL-4 was higher in the GIT group than in the GapC or TRAP groups (<0.05). The GIT group showed an improved protection against in comparison with GapC group. A significant difference in challenge test was detected between the GIT group and the IsdB or TRAP groups (<0.05) in per cent survival of mice, and a synergistic immunoprotection against or was produced in the GIT group. These results suggested that the GIT would be a promising common vaccine candidate against and .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.073593-0
2014-12-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/12/1732.html?itemId=/content/journal/jmm/10.1099/jmm.0.073593-0&mimeType=html&fmt=ahah

References

  1. Bagnoli F., Bertholet S., Grandi G.. ( 2012;). Inferring reasons for the failure of Staphylococcus aureus vaccines in clinical trials. . Front Cell Infect Microbiol 2:, 1–4. [CrossRef][PubMed]
    [Google Scholar]
  2. Bessoles S., Fouret F., Dudal S., Besra G. S., Sanchez F., Lafont V.. ( 2008;). IL-2 triggers specific signaling pathways in human NKT cells leading to the production of pro- and anti-inflammatory cytokines. . J Leukoc Biol 84:, 224–233. [CrossRef][PubMed]
    [Google Scholar]
  3. Bolton A., Song X. M., Willson P., Fontaine M. C., Potter A. A., Perez-Casal J.. ( 2004;). Use of the surface proteins GapC and Mig of Streptococcus dysgalactiae as potential protective antigens against bovine mastitis. . Can J Microbiol 50:, 423–432. [CrossRef][PubMed]
    [Google Scholar]
  4. Boskabady M. H., Mehrjardi S. S., Rezaee A., Rafatpanah H., Jalali S.. ( 2013;). The impact of Zataria multiflora Boiss extract on in vitro and in vivo Th1/Th2 cytokine (IFN-γ/IL4) balance. . J Ethnopharmacol 150:, 1024–1031. [CrossRef][PubMed]
    [Google Scholar]
  5. Bowdish D. M., Davidson D. J., Scott M. G., Hancock R. E.. ( 2005;). Immunomodulatory activities of small host defense peptides. . Antimicrob Agents Chemother 49:, 1727–1732. [CrossRef][PubMed]
    [Google Scholar]
  6. DeDent A., Kim H. K., Missiakas D., Schneewind O.. ( 2012;). Exploring Staphylococcus aureus pathways to disease for vaccine development. . Semin Immunopathol 34:, 317–333. [CrossRef][PubMed]
    [Google Scholar]
  7. Fontaine M. C., Perez-Casal J., Song X. M., Shelford J., Willson P. J., Potter A. A.. ( 2002;). Immunisation of dairy cattle with recombinant Streptococcus uberis GapC or a chimeric CAMP antigen confers protection against heterologous bacterial challenge. . Vaccine 20:, 2278–2286. [CrossRef][PubMed]
    [Google Scholar]
  8. Fu Q., Wei Z. G., Liu X. H., Xiao P. P., Lu Z. H., Chen Y. S.. ( 2013;). Glyceraldehyde-3-phosphate dehydrogenase, an immunogenic Streptococcus equi ssp. zooepidemicus adhesion protein and protective antigen. . J Microbiol Biotechnol 23:, 579–585. [CrossRef][PubMed]
    [Google Scholar]
  9. Gil M. L., Dagan S., Eren R., Gozalbo D.. ( 2006;). Evaluation of the usefulness of anti-glyceraldehyde-3-phosphate dehydrogenase antibodies as a treatment for invasive candidiasis in a murine model. . Antonie van Leeuwenhoek 89:, 345–350. [CrossRef][PubMed]
    [Google Scholar]
  10. Goji N., Potter A. A., Perez-Casal J.. ( 2004;). Characterization of two proteins of Staphylococcus aureus isolated from bovine clinical mastitis with homology to glyceraldehyde-3-phosphate dehydrogenase. . Vet Microbiol 99:, 269–279. [CrossRef][PubMed]
    [Google Scholar]
  11. Hoelzle K., Doser S., Ritzmann M., Heinritzi K., Palzer A., Elicker S., Kramer M., Felder K. M., Hoelzle L. E.. ( 2009;). Vaccination with the Mycoplasma suis recombinant adhesion protein MSG1 elicits a strong immune response but fails to induce protection in pigs. . Vaccine 27:, 5376–5382. [CrossRef][PubMed]
    [Google Scholar]
  12. Joshi A., Pancari G., Cope L., Bowman E. P., Cua D., Proctor R. A., McNeely T.. ( 2012;). Immunization with Staphylococcus aureus iron regulated surface determinant B (IsdB) confers protection via Th17/IL17 pathway in a murine sepsis model. . Hum Vaccin Immunother 8:, 336–346. [CrossRef][PubMed]
    [Google Scholar]
  13. Kerro-Dego O., Prysliak T., Perez-Casal J., Potter A. A.. ( 2012;). Role of GapC in the pathogenesis of Staphylococcus aureus.. Vet Microbiol 156:, 443–447. [CrossRef][PubMed]
    [Google Scholar]
  14. Krieg A. M.. ( 2000;). Immune effects and mechanisms of action of CpG motifs. . Vaccine 19:, 618–622. [CrossRef][PubMed]
    [Google Scholar]
  15. Leigh J. A.. ( 2002;). Immunisation of dairy cattle with recombinant Streptococcus uberis GapC or a chimeric CAMP antigen confers protection against heterologous bacterial challenge. M.C. Fontaine et al. [Vaccine 20 (2002) 2278-2286]. . Vaccine 20:, 3047–3048. [CrossRef][PubMed]
    [Google Scholar]
  16. Leitner G., Krifucks O., Kiran M. D., Balaban N.. ( 2011;). Vaccine development for the prevention of staphylococcal mastitis in dairy cows. . Vet Immunol Immunopathol 142:, 25–35. [CrossRef][PubMed]
    [Google Scholar]
  17. Li X., Wu H., Zhang M., Liang S., Xiao J., Wang Q., Liu Q., Zhang Y.. ( 2012;). Secreted glyceraldehyde-3-phosphate dehydrogenase as a broad spectrum vaccine candidate against microbial infection in aquaculture. . Lett Appl Microbiol 54:, 1–9. [CrossRef][PubMed]
    [Google Scholar]
  18. Liu Y., Oshima S., Kawai K.. ( 2007;). Glyceraldehyde-3-phosphate dehydrogenase of Edwardsiella tarda has protective antigenicity against Vibrio anguillarum in Japanese flounder. . Dis Aquat Organ 75:, 217–220. [CrossRef][PubMed]
    [Google Scholar]
  19. Madureira P., Andrade E. B., Gama B., Oliveira L., Moreira S., Ribeiro A., Correia-Neves M., Trieu-Cuot P., Vilanova M., Ferreira P.. ( 2011;). Inhibition of IL-10 production by maternal antibodies against Group B Streptococcus GAPDH confers immunity to offspring by favoring neutrophil recruitment. . PLoS Pathog 7:, e1002363. [CrossRef][PubMed]
    [Google Scholar]
  20. Matsuzawa T., Fujiwara E., Washi Y.. ( 2014;). Autophagy activation by interferon-γ via the p38 mitogen-activated protein kinase signalling pathway is involved in macrophage bactericidal activity. . Immunology 141:, 61–69. [CrossRef][PubMed]
    [Google Scholar]
  21. McDougall S., Arthur D. G., Bryan M. A., Vermunt J. J., Weir A. M.. ( 2007;). Clinical and bacteriological response to treatment of clinical mastitis with one of three intramammary antibiotics. . N Z Vet J 55:, 161–170. [CrossRef][PubMed]
    [Google Scholar]
  22. Mutwiri G., Gerdts V., van Drunen Littel-van den Hurk S., Auray G., Eng N., Garlapati S., Babiuk L. A., Potter A.. ( 2011;). Combination adjuvants: the next generation of adjuvants. ? Expert Rev Vaccines 10:, 95–107. [CrossRef][PubMed]
    [Google Scholar]
  23. Perez-Casal J., Prysliak T., Kerro-Dego O., Potter A. A.. ( 2006;). Immune responses to a Staphylococcus aureus GapC/B chimera and its potential use as a component of a vaccine for S. aureus mastitis. . Vet Immunol Immunopathol 109:, 85–97. [CrossRef][PubMed]
    [Google Scholar]
  24. Prysliak T., van der Merwe J., Perez-Casal J.. ( 2013;). Vaccination with recombinant Mycoplasma bovis GAPDH results in a strong humoral immune response but does not protect feedlot cattle from an experimental challenge with M. bovis.. Microb Pathog 55:, 1–8. [CrossRef][PubMed]
    [Google Scholar]
  25. Shimmoto H., Kawai K., Ikawa T., Oshima S.. ( 2010;). Protection of red sea bream Pagrus major against red sea bream iridovirus infection by vaccination with a recombinant viral protein. . Microbiol Immunol 54:, 135–142. [CrossRef][PubMed]
    [Google Scholar]
  26. Stranger-Jones Y. K., Bae T., Schneewind O.. ( 2006;). Vaccine assembly from surface proteins of Staphylococcus aureus.. Proc Natl Acad Sci U S A 103:, 16942–16947. [CrossRef][PubMed]
    [Google Scholar]
  27. van der Merwe J., Prysliak T., Gerdts V., Perez-Casal J.. ( 2011;). Protein chimeras containing the Mycoplasma bovis GAPDH protein and bovine host-defence peptides retain the properties of the individual components. . Microb Pathog 50:, 269–277. [CrossRef][PubMed]
    [Google Scholar]
  28. Yu L. Q., Wang N., Ma J. Z., Tong C. Y., Song B. F., Chi J. Q., Ma G. D., Zhu Z. B., Cui Y. D.. ( 2013;). Improved protective efficacy of a chimeric Staphylococcus aureus vaccine candidate iron-regulated surface determinant B (N 126- P 361)-target of RNAIII activating protein in mice. . Microbiol Immunol 57:, 857–864. [CrossRef][PubMed]
    [Google Scholar]
  29. Zhang P., Jespersgaard C., Lamberty-Mallory L., Katz J., Huang Y., Hajishengallis G., Michalek S. M.. ( 2002;). Enhanced immunogenicity of a genetic chimeric protein consisting of two virulence antigens of Streptococcus mutans and protection against infection. . Infect Immun 70:, 6779–6787. [CrossRef][PubMed]
    [Google Scholar]
  30. Zhang C., Yu L., Qian R.. ( 2007;). Characterization of OmpK, GAPDH and their fusion OmpK-GAPDH derived from Vibrio harveyi outer membrane proteins: their immunoprotective ability against vibriosis in large yellow croaker (Pseudosciaena crocea). . J Appl Microbiol 103:, 1587–1599. [CrossRef][PubMed]
    [Google Scholar]
  31. Zhao H. L., Yao X. Q., Xue C., Wang Y., Xiong X. H., Liu Z. M.. ( 2008;). Increasing the homogeneity, stability and activity of human serum albumin and interferon-alpha2b fusion protein by linker engineering. . Protein Expr Purif 61:, 73–77. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.073593-0
Loading
/content/journal/jmm/10.1099/jmm.0.073593-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error