1887

Abstract

The rates of multidrug-resistant, extensively drug-resistant and pandrug-resistant isolates amongst non-fermenting Gram-negative bacilli, particularly , have risen worldwide. The clinical consequence of resistance and the impact of adverse treatment on the outcome of patients with bacteraemia remain unclear. To better understand the predictors of mortality, the clinical consequence of resistance and the impact of inappropriate therapy on patient outcomes, we analysed the first episode of bacteraemia in patients from a Brazilian tertiary-care hospital during the period from May 2009 to August 2011. Antimicrobial susceptibility testing was conducted; phenotypic detection of metallo-β-lactamase (MBL) and PCR of MBL genes were performed on carbapenem-resistant strains. Amongst the 120 isolates, 45.8 % were resistant to carbapenem and 36 strains were tested for MBL detection. A total of 30 % were phenotypically positive and, of these, 77.8 % expressed an MBL gene, (57 %) and -type (43 %). The resistance rates to ceftazidime, cefepime, piperacillin/tazobactam, carbapenem, fluoroquinolone and aminoglycoside were 55, 42.5, 35, 45.8, 44 and 44 %, respectively. Previous antibiotic use, length of a hospital stay ≥30 days prior to , haemodialysis, tracheostomy, pulmonary source of bacteraemia and Intensive Care Unit admission were common independent risk factors for antimicrobial resistance. Cefepime resistance, multidrug resistance and extensive drug resistance were independently associated with inappropriate therapy, which was an important predictor of mortality, being synergistic with the severity of the underlying disease.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.073262-0
2014-12-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/12/1679.html?itemId=/content/journal/jmm/10.1099/jmm.0.073262-0&mimeType=html&fmt=ahah

References

  1. Andrade S. S., Jones R. N., Gales A. C., Sader H. S.. ( 2003;). Increasing prevalence of antimicrobial resistance among Pseudomonas aeruginosa isolates in Latin American medical centres: 5 year report of the SENTRY Antimicrobial Surveillance Program (1997–2001). . J Antimicrob Chemother 52:, 140–141. [CrossRef][PubMed]
    [Google Scholar]
  2. Arakawa Y., Shibata N., Shibayama K., Kurokawa H., Yagi T., Fujiwara H., Goto M.. ( 2000;). Convenient test for screening metallo-β-lactamase-producing gram-negative bacteria by using thiol compounds. . J Clin Microbiol 38:, 40–43.[PubMed]
    [Google Scholar]
  3. Baumgart A. M., Molinari M. A., Silveira A. C.. ( 2010;). Prevalence of carbapenem resistant Pseudomonas aeruginosa and Acinetobacter baumannii in high complexity hospital. . Braz J Infect Dis 14:, 433–436. [CrossRef][PubMed]
    [Google Scholar]
  4. Blanc D. S., Francioli P., Zanetti G.. ( 2007;). Molecular epidemiology of Pseudomonas aeruginosa in the intensive care units – a review. . Open Microbiol J 1:, 8–11. [CrossRef][PubMed]
    [Google Scholar]
  5. Caulcott C. A., Brown M. R. W., Gonda I.. ( 1984;). Evidence for small pores in the outer membrane of Pseudomonas aeruginosa. . FEMS Microbiol Lett 21:, 119–123. [CrossRef]
    [Google Scholar]
  6. Cezário R. C., Duarte De Morais L., Ferreira J. C., Costa-Pinto R. M., da Costa Darini A. L., Gontijo-Filho P. P.. ( 2009;). Nosocomial outbreak by imipenem-resistant metallo-β-lactamase-producing Pseudomonas aeruginosa in an adult intensive care unit in a Brazilian teaching hospital. . Enferm Infecc Microbiol Clin 27:, 269–274. [CrossRef][PubMed]
    [Google Scholar]
  7. CLSI ( 2009;). Performance Standards for Antimicrobial Susceptibility Testing; 19th Informational Supplement M100-S19. . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  8. CLSI ( 2010;). Performance Standards for Antimicrobial Susceptibility Testing; 20th Informational Supplement M100-S20. . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  9. CLSI ( 2011;). Performance Standards for Antimicrobial Susceptibility Testing; 21st Informational Supplement M100-S21. . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  10. Cosgrove S. E.. ( 2006;). The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. . Clin Infect Dis 42: (Suppl 2), S82–S89. [CrossRef][PubMed]
    [Google Scholar]
  11. El Amin N., Giske C. G., Jalal S., Keijser B., Kronvall G., Wretlind B.. ( 2005;). Carbapenem resistance mechanisms in Pseudomonas aeruginosa: alterations of porin OprD and efflux proteins do not fully explain resistance patterns observed in clinical isolates. . APMIS 113:, 187–196. [CrossRef][PubMed]
    [Google Scholar]
  12. Emori T. G., Culver D. H., Horan T. C., Jarvis W. R., White J. W., Olson D. R., Banerjee S., Edwards J. R., Martone W. J.. & other authors ( 1991;). National nosocomial infections surveillance system (NNIS): description of surveillance methods. . Am J Infect Control 19:, 19–35. [CrossRef][PubMed]
    [Google Scholar]
  13. Franco M. R., Caiaffa-Filho H. H., Burattini M. N., Rossi F.. ( 2010;). Metallo-beta-lactamases among imipenem-resistant Pseudomonas aeruginosa in a Brazilian university hospital. . Clinics (Sao Paulo) 65:, 825–829. [CrossRef][PubMed]
    [Google Scholar]
  14. Furtado G. H., Bergamasco M. D., Menezes F. G., Marques D., Silva A., Perdiz L. B., Wey S. B., Medeiros E. A.. ( 2009;). Imipenem-resistant Pseudomonas aeruginosa infection at a medical-surgical intensive care unit: risk factors and mortality. . J Crit Care 24:, 625.e9–625.e14. [CrossRef][PubMed]
    [Google Scholar]
  15. Gilbert D. N., Moellering R. C., Eliopoulos G. M., Sande M. A.. ( 2007;). The Sanford Guide to Antimicrobial Therapy, , 37th edn.. Sperryville, VA:: Antimicrobial Therapy;.
    [Google Scholar]
  16. Hirsch E. B., Tam V. H.. ( 2010;). Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. . Expert Rev Pharmacoecon Outcomes Res 10:, 441–451. [CrossRef][PubMed]
    [Google Scholar]
  17. Horan T. C., Andrus M., Dudeck M. A.. ( 2008;). CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. . Am J Infect Control 36:, 309–332. [CrossRef][PubMed]
    [Google Scholar]
  18. Joo E. J., Kang C. I., Ha Y. E., Kang S. J., Park S. Y., Chung D. R., Peck K. R., Lee N. Y., Song J. H.. ( 2011;). Risk factors for mortality in patients with Pseudomonas aeruginosa bacteremia: clinical impact of antimicrobial resistance on outcome. . Microb Drug Resist 17:, 305–312. [CrossRef][PubMed]
    [Google Scholar]
  19. Kang C. I., Kim S. H., Kim H. B., Park S. W., Choe Y. J., Oh M. D., Kim E. C., Choe K. W.. ( 2003;). Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. . Clin Infect Dis 37:, 745–751. [CrossRef][PubMed]
    [Google Scholar]
  20. Kang C. I., Kim S. H., Park W. B., Lee K. D., Kim H. B., Kim E. C., Oh M. D., Choe K. W.. ( 2005;). Bloodstream infections caused by antibiotic-resistant Gram-negative bacilli: risk factors for mortality and impact of inappropriate initial antimicrobial therapy on outcome. . Antimicrob Agents Chemother 49:, 760–766. [CrossRef][PubMed]
    [Google Scholar]
  21. Kiffer C., Hsiung A., Oplustil C., Sampaio J., Sakagami E., Turner P., Mendes C..MYSTIC Brazil Group ( 2005;). Antimicrobial susceptibility of Gram-negative bacteria in Brazilian hospitals: the MYSTIC Program Brazil 2003. . Braz J Infect Dis 9:, 216–224. [CrossRef][PubMed]
    [Google Scholar]
  22. Laupland K. B., Parkins M. D., Church D. L., Gregson D. B., Louie T. J., Conly J. M., Elsayed S., Pitout J. D.. ( 2005;). Population-based epidemiological study of infections caused by carbapenem-resistant Pseudomonas aeruginosa in the Calgary Health Region: importance of metallo-β-lactamase (MBL)-producing strains. . J Infect Dis 192:, 1606–1612. [CrossRef][PubMed]
    [Google Scholar]
  23. Lodise T. P. Jr, Patel N., Kwa A., Graves J., Furuno J. P., Graffunder E., Lomaestro B., McGregor J. C.. ( 2007;). Predictors of 30-day mortality among patients with Pseudomonas aeruginosa bloodstream infections: impact of delayed appropriate antibiotic selection. . Antimicrob Agents Chemother 51:, 3510–3515. [CrossRef][PubMed]
    [Google Scholar]
  24. Magiorakos A. P., Srinivasan A., Carey R. B., Carmeli Y., Falagas M. E., Giske C. G., Harbarth S., Hindler J. F., Kahlmeter G.. & other authors ( 2012;). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. . Clin Microbiol Infect 18:, 268–281. [CrossRef][PubMed]
    [Google Scholar]
  25. Mathee K., Narasimhan G., Valdes C., Qiu X., Matewish J. M., Koehrsen M., Rokas A., Yandava C. N., Engels R.. & other authors ( 2008;). Dynamics of Pseudomonas aeruginosa genome evolution. . Proc Natl Acad Sci U S A 105:, 3100–3105. [CrossRef][PubMed]
    [Google Scholar]
  26. Morales E., Cots F., Sala M., Comas M., Belvis F., Riu M., Salvadó M., Grau S., Horcajada J. P.. & other authors ( 2012;). Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. . BMC Health Serv Res 12:, 122–129. [CrossRef][PubMed]
    [Google Scholar]
  27. Peña C., Suarez C., Gozalo M., Murillas J., Almirante B., Pomar V., Aguilar M., Granados A., Calbo E.. & other authors ( 2012;). Prospective multicenter study of the impact of carbapenem resistance on mortality in Pseudomonas aeruginosa bloodstream infections. . Antimicrob Agents Chemother 56:, 1265–1272. [CrossRef][PubMed]
    [Google Scholar]
  28. Rosenthal V. D., Maki D. G., Salomao R., Moreno C. A., Mehta Y., Higuera F., Cuellar L. E., Arikan O. A., Abouqal R., Leblebicioglu H..International Nosocomial Infection Control Consortium ( 2006;). Device-associated nosocomial infections in 55 intensive care units of 8 developing countries. . Ann Intern Med 145:, 582–591. [CrossRef][PubMed]
    [Google Scholar]
  29. Sader H. S., Gales A. C., Pfaller M. A., Mendes R. E., Zoccoli C., Barth A., Jones R. N.. ( 2001;). Pathogen frequency and resistance patterns in Brazilian hospitals: summary of results from three years of the SENTRY Antimicrobial Surveillance Program. . Braz J Infect Dis 5:, 200–214. [CrossRef][PubMed]
    [Google Scholar]
  30. Scheffer M. C., Gales A. C., Barth A. L., Carmo Filho J. R., Dalla-Costa L. M.. ( 2010;). Carbapenem-resistant Pseudomonas aeruginosa: clonal spread in southern Brazil and in the state of Goiás. . Braz J Infect Dis 14:, 508–509.[PubMed]
    [Google Scholar]
  31. Singh G., Wu B., Baek M. S., Camargo A., Nguyen A., Slusher N. A., Srinivasan R., Wiener-Kronish J. P., Lynch S. V.. ( 2010;). Secretion of Pseudomonas aeruginosa type III cytotoxins is dependent on pseudomonas quinolone signal concentration. . Microb Pathog 49:, 196–203. [CrossRef][PubMed]
    [Google Scholar]
  32. Souli M., Galani I., Giamarellou H.. ( 2008;). Emergence of extensively drug-resistant and pandrug-resistant Gram-negative bacilli in Europe. . Euro Surveill 13:, 1–11.[PubMed]
    [Google Scholar]
  33. Strateva T., Yordanov D.. ( 2009;). Pseudomonas aeruginosa – a phenomenon of bacterial resistance. . J Med Microbiol 58:, 1133–1148. [CrossRef][PubMed]
    [Google Scholar]
  34. Wirth F. W., Picoli S. U., Cantarelli V. V., Gonçalves A. L., Brust F. R., Santos L. M., Barreto M. F.. ( 2009;). Metallo-β-lactamase-producing Pseudomonas aeruginosa in two hospitals from southern Brazil. . Braz J Infect Dis 13:, 170–172. [CrossRef][PubMed]
    [Google Scholar]
  35. Woodford N.. ( 2010;). Rapid characterization of beta-lactamases by multiplex PCR. . Methods Mol Biol 642:, 181–192. [CrossRef][PubMed]
    [Google Scholar]
  36. Xavier D. E., Picão R. C., Girardello R., Fehlberg L. C., Gales A. C.. ( 2010;). Efflux pumps expression and its association with porin down-regulation and beta-lactamase production among Pseudomonas aeruginosa causing bloodstream infections in Brazil. . BMC Microbiol 10:, 217–223. [CrossRef][PubMed]
    [Google Scholar]
  37. Zavascki A. P., Barth A. L., Gonçalves A. L., Moro A. L., Fernandes J. F., Martins A. F., Ramos F., Goldani L. Z.. ( 2006;). The influence of metallo-beta-lactamase production on mortality in nosocomial Pseudomonas aeruginosa infections. . J Antimicrob Chemother 58:, 387–392. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.073262-0
Loading
/content/journal/jmm/10.1099/jmm.0.073262-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error