1887

Abstract

S is the most commonly isolated aetiological agent of nosocomial infections, mainly due to its ability to establish biofilms on indwelling medical devices. Detachment of bacteria from biofilms and subsequent growth in the planktonic form is a hallmark of the pathogenesis of these infections leading to dissemination. Here we showed that cells collected from biofilms cultured in conditions that promote cell viability present marked changes in their physiological status upon initiating a planktonic mode of growth. When compared to cells growing in biofilms, they displayed an increased SYBR green I staining intensity, increased transcription of the gene, decreased transcription of the gene, as well as higher susceptibility to vancomycin and penicillin. When bacteria collected from biofilms with high proportions of dormant cells were subsequently cultured in the planktonic mode, a large proportion of cells maintained a low SYBR green I staining intensity and increased resistance to vancomycin and penicillin, a profile typical of dormant cells. This phenotype further associated with a decreased ability of these biofilm-derived cells to induce the production of pro-inflammatory cytokines by bone marrow-derived dendritic cells . These results demonstrated that cells detached from the biofilm maintain a dormant cell-like phenotype, having a low pro-inflammatory effect and decreased susceptibility to antibiotics, suggesting these cells may contribute to the recalcitrant nature of biofilm infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.073163-0
2014-10-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/10/1274.html?itemId=/content/journal/jmm/10.1099/jmm.0.073163-0&mimeType=html&fmt=ahah

References

  1. Bearman G. M. L. , Wenzel R. P. . ( 2005; ). Bacteremias: a leading cause of death. . Arch Med Res 36:, 646–659. [CrossRef] [PubMed]
    [Google Scholar]
  2. Carvalhais V. , França A. , Cerca F. , Vitorino R. , Pier G. B. , Vilanova M. , Cerca N. . ( 2014; ). Dormancy within Staphylococcus epidermidis biofilms: a transcriptomic analysis by RNA-seq. . Appl Microbiol Biotechnol 98:, 2585–2596. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cerca F. , Andrade F. , França A. , Andrade E. B. , Ribeiro A. , Almeida A. A. , Cerca N. , Pier G. , Azeredo J. , Vilanova M. . ( 2011a; ). Staphylococcus epidermidis biofilms with higher proportions of dormant bacteria induce a lower activation of murine macrophages. . J Med Microbiol 60:, 1717–1724. [CrossRef] [PubMed]
    [Google Scholar]
  4. Cerca F. , França Â. , Guimarães R. , Hinzmann M. , Cerca N. , Lobo da Cunha A. , Azeredo J. , Vilanova M. . ( 2011b; ). Modulation of poly-N-acetylglucosamine accumulation within mature Staphylococcus epidermidis biofilms grown in excess glucose. . Microbiol Immunol 55:, 673–682. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cerca F. , Trigo G. , Correia A. , Cerca N. , Azeredo J. , Vilanova M. . ( 2011c; ). SYBR green as a fluorescent probe to evaluate the biofilm physiological state of Staphylococcus epidermidis, using flow cytometry. . Can J Microbiol 57:, 850–856. [CrossRef] [PubMed]
    [Google Scholar]
  6. Costerton J. W. , Post J. C. , Ehrlich G. D. , Hu F. Z. , Kreft R. , Nistico L. , Kathju S. , Stoodley P. , Hall-Stoodley L. . & other authors ( 2011; ). New methods for the detection of orthopedic and other biofilm infections. . FEMS Immunol Med Microbiol 61:, 133–140. [CrossRef] [PubMed]
    [Google Scholar]
  7. Dimick J. B. , Pelz R. K. , Consunji R. , Swoboda S. M. , Hendrix C. W. , Lipsett P. A. . ( 2001; ). Increased resource use associated with catheter-related bloodstream infection in the surgical intensive care unit. . Arch Surg 136:, 229–234. [CrossRef] [PubMed]
    [Google Scholar]
  8. Fallat M. E. , Gallinaro R. N. , Stover B. H. , Wilkerson S. , Goldsmith L. J. . ( 1998; ). Central venous catheter bloodstream infections in the neonatal intensive care unit. . J Pediatr Surg 33:, 1383–1387. [CrossRef] [PubMed]
    [Google Scholar]
  9. França A. , Melo L. D. , Cerca N. . ( 2011; ). Comparison of RNA extraction methods from biofilm samples of Staphylococcus epidermidis . . BMC Res Notes 4:, 572. [CrossRef] [PubMed]
    [Google Scholar]
  10. Fux C. A. , Costerton J. W. , Stewart P. S. , Stoodley P. . ( 2005; ). Survival strategies of infectious biofilms. . Trends Microbiol 13:, 34–40. [CrossRef] [PubMed]
    [Google Scholar]
  11. Götz F. . ( 2002; ). Staphylococcus and biofilms. . Mol Microbiol 43:, 1367–1378. [CrossRef] [PubMed]
    [Google Scholar]
  12. Heilmann C. , Schweitzer O. , Gerke C. , Vanittanakom N. , Mack D. , Götz F. . ( 1996; ). Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis . . Mol Microbiol 20:, 1083–1091. [CrossRef] [PubMed]
    [Google Scholar]
  13. Heim C. E. , Vidlak D. , Scherr T. D. , Kozel J. A. , Holzapfel M. , Muirhead D. E. , Kielian T. . ( 2014; ). Myeloid-derived suppressor cells contribute to Staphylococcus aureus orthopedic biofilm infection. . J Immunol 192:, 3778–3792. [CrossRef] [PubMed]
    [Google Scholar]
  14. Høiby N. , Bjarnsholt T. , Givskov M. , Molin S. , Ciofu O. . ( 2010; ). Antibiotic resistance of bacterial biofilms. . Int J Antimicrob Agents 35:, 322–332. [CrossRef] [PubMed]
    [Google Scholar]
  15. Jeppsson M. , Johansson B. , Hahn-Hägerdal B. , Gorwa-Grauslund M. F. . ( 2002; ). Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. . Appl Environ Microbiol 68:, 1604–1609. [CrossRef] [PubMed]
    [Google Scholar]
  16. Lybarger S. R. , Maddock J. R. . ( 2001; ). Polarity in action: asymmetric protein localization in bacteria. . J Bacteriol 183:, 3261–3267. [CrossRef] [PubMed]
    [Google Scholar]
  17. Mack D. , Nedelmann M. , Krokotsch A. , Schwarzkopf A. , Heesemann J. , Laufs R. . ( 1994; ). Characterization of transposon mutants of biofilm-producing Staphylococcus epidermidis impaired in the accumulative phase of biofilm production: genetic identification of a hexosamine-containing polysaccharide intercellular adhesin. . Infect Immun 62:, 3244–3253.[PubMed]
    [Google Scholar]
  18. Mack D. , Fischer W. , Krokotsch A. , Leopold K. , Hartmann R. , Egge H. , Laufs R. . ( 1996; ). The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear β-1,6-linked glucosaminoglycan: purification and structural analysis. . J Bacteriol 178:, 175–183.[PubMed]
    [Google Scholar]
  19. Nedelmann M. , Sabottke A. , Laufs R. , Mack D. . ( 1998; ). Generalized transduction for genetic linkage analysis and transfer of transposon insertions in different Staphylococcus epidermidis strains. . Zentralbl Bakteriol 287:, 85–92. [CrossRef] [PubMed]
    [Google Scholar]
  20. Oliver J. D. . ( 2010; ). Recent findings on the viable but nonculturable state in pathogenic bacteria. . FEMS Microbiol Rev 34:, 415–425.[PubMed]
    [Google Scholar]
  21. Otto M. . ( 2009; ). Staphylococcus epidermidis – the ‘accidental’ pathogen. . Nat Rev Microbiol 7:, 555–567. [CrossRef] [PubMed]
    [Google Scholar]
  22. Otto M. . ( 2013; ). Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. . Annu Rev Med 64:, 175–188. [CrossRef] [PubMed]
    [Google Scholar]
  23. Raad I. , Alrahwan A. , Rolston K. . ( 1998; ). Staphylococcus epidermidis: emerging resistance and need for alternative agents. . Clin Infect Dis 26:, 1182–1187. [CrossRef] [PubMed]
    [Google Scholar]
  24. Resch A. , Rosenstein R. , Nerz C. , Götz F. . ( 2005; ). Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. . Appl Environ Microbiol 71:, 2663–2676. [CrossRef] [PubMed]
    [Google Scholar]
  25. Rogers K. L. , Fey P. D. , Rupp M. E. . ( 2009; ). Coagulase-negative staphylococcal infections. . Infect Dis Clin North Am 23:, 73–98. [CrossRef] [PubMed]
    [Google Scholar]
  26. Rozen S. , Skaletsky H. . ( 2000; ). Primer3 on the WWW for general users and for biologist programmers. . Methods Mol Biol 132:, 365–386.[PubMed]
    [Google Scholar]
  27. Shi L. , Günther S. , Hübschmann T. , Wick L. Y. , Harms H. , Müller S. . ( 2007; ). Limits of propidium iodide as a cell viability indicator for environmental bacteria. . Cytometry A 71:, 592–598. [CrossRef] [PubMed]
    [Google Scholar]
  28. Thurlow L. R. , Hanke M. L. , Fritz T. , Angle A. , Aldrich A. , Williams S. H. , Engebretsen I. L. , Bayles K. W. , Horswill A. R. , Kielian T. . ( 2011; ). Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. . J Immunol 186:, 6585–6596.[CrossRef]
    [Google Scholar]
  29. Uçkay I. , Pittet D. , Vaudaux P. , Sax H. , Lew D. , Waldvogel F. . ( 2009; ). Foreign body infections due to Staphylococcus epidermidis. . Ann Med 41:, 109–119. [CrossRef] [PubMed]
    [Google Scholar]
  30. Wang R. , Khan B. A. , Cheung G. Y. C. , Bach T.-H. L. , Jameson-Lee M. , Kong K.-F. , Queck S. Y. , Otto M. . ( 2011; ). Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. . J Clin Invest 121:, 238–248. [CrossRef] [PubMed]
    [Google Scholar]
  31. Xu Q. , Katz J. , Zhang P. , Ashtekar A. R. , Gaddis D. E. , Fan M. , Michalek S. M. . ( 2011; ). Contribution of a Streptococcus mutans antigen expressed by a Salmonella vector vaccine in dendritic cell activation. . Infect Immun 79:, 3792–3800. [CrossRef] [PubMed]
    [Google Scholar]
  32. Yao Y. , Sturdevant D. E. , Otto M. . ( 2005; ). Genomewide analysis of gene expression in Staphylococcus epidermidis biofilms: insights into the pathophysiology of S. epidermidis biofilms and the role of phenol-soluble modulins in formation of biofilms. . J Infect Dis 191:, 289–298. [CrossRef] [PubMed]
    [Google Scholar]
  33. Zandri G. , Pasquaroli S. , Vignaroli C. , Talevi S. , Manso E. , Donelli G. , Biavasco F. . ( 2012; ). Detection of viable but non-culturable staphylococci in biofilms from central venous catheters negative on standard microbiological assays. . Clin Microbiol Infect 18:, E259–E261.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.073163-0
Loading
/content/journal/jmm/10.1099/jmm.0.073163-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error