1887

Abstract

The present study investigated the cause of illness in human patients primarily in the southern USA with suspected Lyme disease based on erythema migrans-like skin lesions and/or symptoms consistent with early localized or late disseminated Lyme borreliosis. The study also included some patients from other states throughout the USA. Several PCR assays specific for either members of the genus or only for Lyme group spp. ( ), and DNA sequence analysis, were used to identify spp. DNA in blood and skin biopsy samples from human patients. DNA was found in both blood and skin biopsy samples from patients residing in the southern states and elsewhere in the USA, but no evidence of DNA from other spp. was detected. Based on phylogenetic analysis of partial flagellin () gene sequences, strains that clustered separately with , or were associated with Lyme disease-like signs and symptoms in patients from the southern states, as well as from some other areas of the country. Strains most similar to and were found most commonly and appeared to be widely distributed among patients residing throughout the USA. The study findings suggest that human cases of Lyme disease in the southern USA may be more common than previously recognized and may also be caused by more than one species of . This study provides further evidence that is not the only species associated with signs and/or symptoms consistent with Lyme borreliosis in the USA.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.073122-0
2014-05-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/5/674.html?itemId=/content/journal/jmm/10.1099/jmm.0.073122-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990; ). Basic local alignment search tool. . J Mol Biol 215:, 403–410.[PubMed] [CrossRef]
    [Google Scholar]
  2. Bacon R. M. , Kugeler K. J. , Mead P. S. . Centers for Disease Control and Prevention (CDC) ( 2008; ). Surveillance for Lyme disease – United States 1992–2006. . MMWR Surveill Summ 57: (SS10), 1–9.[PubMed]
    [Google Scholar]
  3. Barbour A. G. , Maupin G. O. , Teltow G. J. , Carter C. J. , Piesman J. . ( 1996; ). Identification of an uncultivable Borrelia species in the hard tick Amblyomma americanum: possible agent of a Lyme disease-like illness. . J Infect Dis 173:, 403–409. [CrossRef] [PubMed]
    [Google Scholar]
  4. Biesiada G. , Czepiel J. , Leśniak M. R. , Garlicki A. , Mach T. . ( 2012; ). Lyme disease: review. . Arch Med Sci 8:, 978–982. [CrossRef] [PubMed]
    [Google Scholar]
  5. Clark K. . ( 2004; ). Borrelia species in host-seeking ticks and small mammals in northern Florida. . J Clin Microbiol 42:, 5076–5086. [CrossRef] [PubMed]
    [Google Scholar]
  6. Clark K. , Hendricks A. , Burge D. . ( 2005; ). Molecular identification and analysis of Borrelia burgdorferi sensu lato in lizards in the southeastern United States. . Appl Environ Microbiol 71:, 2616–2625. [CrossRef] [PubMed]
    [Google Scholar]
  7. Clark K. L. , Leydet B. , Hartman S. . ( 2013; ). Lyme borreliosis in human patients in Florida and Georgia, USA. . Int J Med Sci 10:, 915–931. [CrossRef] [PubMed]
    [Google Scholar]
  8. Feder H. M. Jr , Hoss D. M. , Zemel L. , Telford S. R. III , Dias F. , Wormser G. P. . ( 2011; ). Southern tick-associated rash illness (STARI) in the north: STARI following a tick bite in Long Island, New York. . Clin Infect Dis 53:, e142–e146. [CrossRef] [PubMed]
    [Google Scholar]
  9. Feir D. , Santanello C. R. , Li B. W. , Xie C. S. , Masters E. , Marconi R. , Weil G. . ( 1994; ). Evidence supporting the presence of Borrelia burgdorferi in Missouri. . Am J Trop Med Hyg 51:, 475–482.[PubMed]
    [Google Scholar]
  10. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  11. Felz M. W. , Durden L. A. , Oliver J. H. Jr . ( 1996; ). Ticks parasitizing humans in Georgia and South Carolina. . J Parasitol 82:, 505–508. [CrossRef] [PubMed]
    [Google Scholar]
  12. Felz M. W. , Chandler F. W. Jr , Oliver J. H. Jr , Rahn D. W. , Schriefer M. E. . ( 1999; ). Solitary erythema migrans in Georgia and South Carolina. . Arch Dermatol 135:, 1317–1326. [CrossRef] [PubMed]
    [Google Scholar]
  13. Fukunaga M. , Okada K. , Nakao M. , Konishi T. , Sato Y. . ( 1996; ). Phylogenetic analysis of Borrelia species based on flagellin gene sequences and its application for molecular typing of Lyme disease borreliae. . Int J Syst Bacteriol 46:, 898–905. [CrossRef] [PubMed]
    [Google Scholar]
  14. Girard Y. A. , Fedorova N. , Lane R. S. . ( 2011; ). Genetic diversity of Borrelia burgdorferi and detection of B. bissettii-like DNA in serum of north-coastal California residents. . J Clin Microbiol 49:, 945–954. [CrossRef] [PubMed]
    [Google Scholar]
  15. Guy E. C. , Stanek G. . ( 1991; ). Detection of Borrelia burgdorferi in patients with Lyme disease by the polymerase chain reaction. . J Clin Pathol 44:, 610–611. [CrossRef] [PubMed]
    [Google Scholar]
  16. Halperin J. J. , Baker P. , Wormser G. P. . ( 2013; ). Common misconceptions about Lyme disease. . Am J Med 126:, 264.e1–264.e7. [CrossRef] [PubMed]
    [Google Scholar]
  17. He Q. , Marjamäki M. , Soini H. , Mertsola J. , Viljanen M. K. . ( 1994; ). Primers are decisive for sensitivity of PCR. . Biotechniques 17:, 82–, 84–, 86– –87.[PubMed]
    [Google Scholar]
  18. James A. M. , Liveris D. , Wormser G. P. , Schwartz I. , Montecalvo M. A. , Johnson B. J. B. . ( 2001; ). Borrelia lonestari infection after a bite by an Amblyomma americanum tick. . J Infect Dis 183:, 1810–1814. [CrossRef] [PubMed]
    [Google Scholar]
  19. Johnson R. C. , Schmid G. P. , Hyde F. W. , Steigerwalt A. G. , Brenner D. J. . ( 1984; ). Borrelia burgdorferi sp. nov.: etiologic agent of Lyme disease. . Int J Syst Bacteriol 34:, 496–497. [CrossRef]
    [Google Scholar]
  20. Johnson B. J. B. , Happ C. M. , Mayer L. W. , Piesman J. . ( 1992; ). Detection of Borrelia burgdorferi in ticks by species-specific amplification of the flagellin gene. . Am J Trop Med Hyg 47:, 730–741.[PubMed]
    [Google Scholar]
  21. Kirkland K. B. , Klimko T. B. , Meriwether R. A. , Schriefer M. , Levin M. , Levine J. , Mac Kenzie W. R. , Dennis D. T. . ( 1997; ). Erythema migrans-like rash illness at a camp in North Carolina: a new tick-borne disease?. Arch Intern Med 157:, 2635–2641. [CrossRef] [PubMed]
    [Google Scholar]
  22. Lebech A.-M. , Hansen K. , Wilske B. , Theisen M. . ( 1994; ). Taxonomic classification of 29 Borrelia burgdorferi strains isolated from patients with Lyme borreliosis: a comparison of five different phenotypic and genotypic typing schemes. . Med Microbiol Immunol (Berl) 183:, 325–341. [CrossRef] [PubMed]
    [Google Scholar]
  23. Lee S. H. , Kim B. J. , Kim J. H. , Park K. H. , Kim S. J. , Kook Y. H. . ( 2000; ). Differentiation of Borrelia burgdorferi sensu lato on the basis of RNA polymerase gene (rpoB) sequences. . J Clin Microbiol 38:, 2557–2562.[PubMed]
    [Google Scholar]
  24. Lee S. H. , Lee J. H. , Park H. S. , Jang W. J. , Koh S. E. , Yang Y. M. , Kim B. J. , Kook Y. H. , Park K. H. . ( 2003; ). Differentiation of Borrelia burgdorferi sensu lato through groEL gene analysis. . FEMS Microbiol Lett 222:, 51–57. [CrossRef] [PubMed]
    [Google Scholar]
  25. Levine J. F. , Wilson M. L. , Spielman A. . ( 1985; ). Mice as reservoirs of the Lyme disease spirochete. . Am J Trop Med Hyg 34:, 355–360.[PubMed]
    [Google Scholar]
  26. Lin T. , Oliver J. H. Jr , Gao L. , Kollars T. M. Jr , Clark K. L. . ( 2001; ). Genetic heterogeneity of Borrelia burgdorferi sensu lato in the southern United States based on restriction fragment length polymorphism and sequence analysis. . J Clin Microbiol 39:, 2500–2507. [CrossRef] [PubMed]
    [Google Scholar]
  27. Lin T. , Oliver J. H. Jr , Gao L. . ( 2003; ). Comparative analysis of Borrelia isolates from southeastern USA based on randomly amplified polymorphic DNA fingerprint and 16S ribosomal gene sequence analyses. . FEMS Microbiol Lett 228:, 249–257. [CrossRef] [PubMed]
    [Google Scholar]
  28. Marconi R. T. , Liveris D. , Schwartz I. . ( 1995; ). Identification of novel insertion elements, restriction fragment length polymorphism patterns, and discontinuous 23S rRNA in Lyme disease spirochetes: phylogenetic analyses of rRNA genes and their intergenic spacers in Borrelia japonica sp. nov. and genomic group 21038 (Borrelia andersonii sp. nov.) isolates. . J Clin Microbiol 33:, 2427–2434.[PubMed]
    [Google Scholar]
  29. Margos G. , Vollmer S. A. , Cornet M. , Garnier M. , Fingerle V. , Wilske B. , Bormane A. , Vitorino L. , Collares-Pereira M. . & other authors ( 2009; ). A new Borrelia species defined by multilocus sequence analysis of housekeeping genes. . Appl Environ Microbiol 75:, 5410–5416. [CrossRef] [PubMed]
    [Google Scholar]
  30. Margos G. , Hojgaard A. , Lane R. S. , Cornet M. , Fingerle V. , Rudenko N. , Ogden N. , Aanensen D. M. , Fish D. , Piesman J. . ( 2010; ). Multilocus sequence analysis of Borrelia bissettii strains from North America reveals a new Borrelia species, Borrelia kurtenbachii . . Ticks Tick Borne Dis 1:, 151–158. [CrossRef] [PubMed]
    [Google Scholar]
  31. Masters E. J. , Grigery C. N. , Masters R. W. . ( 2008; ). STARI, or Masters disease: lone star tick-vectored Lyme-like illness. . Infect Dis Clin North Am 22:, 361–376, viii. [CrossRef] [PubMed]
    [Google Scholar]
  32. Merten H. A. , Durden L. A. . ( 2000; ). A state-by-state survey of ticks recorded from humans in the United States. . J Vector Ecol 25:, 102–113.[PubMed]
    [Google Scholar]
  33. Mukolwe S. W. , Kocan A. A. , Barker R. W. , Kocan K. M. , Murphy G. L. . ( 1992; ). Attempted transmission of Borrelia burgdorferi (Spirochaetales: Spirochaetaceae) (JDI strain) by Ixodes scapularis (Acari: Ixodidae), Dermacentor variabilis, and Amblyomma americanum . . J Med Entomol 29:, 673–677.[PubMed] [CrossRef]
    [Google Scholar]
  34. Murray T. S. , Shapiro E. D. . ( 2010; ). Lyme disease. . Clin Lab Med 30:, 311–328. [CrossRef] [PubMed]
    [Google Scholar]
  35. Picken R. N. . ( 1992; ). Polymerase chain reaction primers and probes derived from flagellin gene sequences for specific detection of the agents of Lyme disease and North American relapsing fever. . J Clin Microbiol 30:, 99–114.[PubMed]
    [Google Scholar]
  36. Piesman J. , Happ C. M. . ( 1997; ). Ability of the Lyme disease spirochete Borrelia burgdorferi to infect rodents and three species of human-biting ticks (blacklegged tick, American dog tick, lone star tick) (Acari:Ixodidae). . J Med Entomol 34:, 451–456.[PubMed] [CrossRef]
    [Google Scholar]
  37. Postic D. , Ras N. M. , Lane R. S. , Hendson M. , Baranton G. . ( 1998; ). Expanded diversity among Californian Borrelia isolates and description of Borrelia bissettii sp. nov. (formerly Borrelia group DN127). . J Clin Microbiol 36:, 3497–3504.[PubMed]
    [Google Scholar]
  38. Postic D. , Garnier M. , Baranton G. . ( 2007; ). Multilocus sequence analysis of atypical Borrelia burgdorferi sensu lato isolates – description of Borrelia californiensis sp. nov., and genomospecies 1 and 2. . Int J Med Microbiol 297:, 263–271. [CrossRef] [PubMed]
    [Google Scholar]
  39. Rijpkema S. G. T. , Molkenboer M. J. C. H. , Schouls L. M. , Jongejan F. , Schellekens J. F. P. . ( 1995; ). Simultaneous detection and genotyping of three genomic groups of Borrelia burgdorferi sensu lato in Dutch Ixodes ricinus ticks by characterization of the amplified intergenic spacer region between 5S and 23S rRNA genes. . J Clin Microbiol 33:, 3091–3095.[PubMed]
    [Google Scholar]
  40. Rosa P. A. , Hogan D. , Schwan T. G. . ( 1991; ). Polymerase chain reaction analyses identify two distinct classes of Borrelia burgdorferi . . J Clin Microbiol 29:, 524–532.[PubMed]
    [Google Scholar]
  41. Rudenko N. , Golovchenko M. , Grubhoffer L. , Oliver J. H. Jr . ( 2009a; ). Borrelia carolinensis sp. nov., a new (14th) member of the Borrelia burgdorferi sensu lato complex from the southeastern region of the United States. . J Clin Microbiol 47:, 134–141. [CrossRef] [PubMed]
    [Google Scholar]
  42. Rudenko N. , Golovchenko M. , Lin T. , Gao L. , Grubhoffer L. , Oliver J. H. Jr . ( 2009b; ). Delineation of a new species of the Borrelia burgdorferi sensu lato complex, Borrelia americana sp. nov. . J Clin Microbiol 47:, 3875–3880. [CrossRef] [PubMed]
    [Google Scholar]
  43. Schmidt B. L. , Aberer E. , Stockenhuber C. , Klade H. , Breier F. , Luger A. . ( 1995; ). Detection of Borrelia burgdorferi DNA by polymerase chain reaction in the urine and breast milk of patients with Lyme borreliosis. . Diagn Microbiol Infect Dis 21:, 121–128. http://www.ncbi.nlm.nih.gov/pubmed/7648832 [CrossRef] [PubMed]
    [Google Scholar]
  44. Schulze T. L. , Bowen G. S. , Bosler E. M. , Lakat M. F. , Parkin W. E. , Altman R. , Ormiston B. G. , Shisler J. K. . ( 1984; ). Amblyomma americanum: a potential vector of Lyme disease in New Jersey. . Science 224:, 601–603. [CrossRef] [PubMed]
    [Google Scholar]
  45. Sonenshine D. E. , Ratzlaff R. E. , Troyer J. , Demmerle S. , Demmerle E. R. , Austin W. E. , Tan S. , Annis B. A. , Jenkins S. . ( 1995; ). Borrelia burgdorferi in eastern Virginia: comparison between a coastal and inland locality. . Am J Trop Med Hyg 53:, 123–133.[PubMed]
    [Google Scholar]
  46. Stromdahl E. Y. , Evans S. R. , O’Brien J. J. , Gutierrez A. G. . ( 2001; ). Prevalence of infection in ticks submitted to the human tick test kit program of the U.S. Army Center for Health Promotion and Preventive Medicine. . J Med Entomol 38:, 67–74. [CrossRef] [PubMed]
    [Google Scholar]
  47. Stromdahl E. Y. , Williamson P. C. , Kollars T. M. Jr , Evans S. R. , Barry R. K. , Vince M. A. , Dobbs N. A. . ( 2003; ). Evidence of Borrelia lonestari DNA in Amblyomma americanum (Acari: Ixodidae) removed from humans. . J Clin Microbiol 41:, 5557–5562. [CrossRef] [PubMed]
    [Google Scholar]
  48. Tamura K. , Nei M. . ( 1993; ). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. . Mol Biol Evol 10:, 512–526.[PubMed]
    [Google Scholar]
  49. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  50. Teltow G. J. , Fournier P. V. , Rawlings J. A. . ( 1991; ). Isolation of Borrelia burgdorferi from arthropods collected in Texas. . Am J Trop Med Hyg 44:, 469–474.[PubMed]
    [Google Scholar]
  51. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  52. Walker E. D. , Smith T. W. , DeWitt J. , Beaudo D. C. , McLean R. G. . ( 1994; ). Prevalence of Borrelia burgdorferi in host-seeking ticks (Acari: Ixodidae) from a Lyme disease endemic area in northern Michigan. . J Med Entomol 31:, 524–528.[PubMed] [CrossRef]
    [Google Scholar]
  53. Williamson P. C. , Billingsley P. M. , Teltow G. J. , Seals J. P. , Turnbough M. A. , Atkinson S. F. . ( 2010; ). Borrelia, Ehrlichia, and Rickettsia spp. in ticks removed from persons, Texas, USA. . Emerg Infect Dis 16:, 441–446. [CrossRef] [PubMed]
    [Google Scholar]
  54. Wodecka B. . ( 2011; ). flaB gene as a molecular marker for distinct identification of Borrelia species in environmental samples by the PCR-restriction fragment length polymorphism method. . Appl Environ Microbiol 77:, 7088–7092. [CrossRef] [PubMed]
    [Google Scholar]
  55. Wodecka B. , Rymaszewska A. , Sawczuk M. , Skotarczak B. . ( 2009; ). Detectability of tick-borne agents DNA in the blood of dogs, undergoing treatment for borreliosis. . Ann Agric Environ Med 16:, 9–14. [CrossRef] [PubMed]
    [Google Scholar]
  56. Wodecka B. , Leońska A. , Skotarczak B. . ( 2010; ). A comparative analysis of molecular markers for the detection and identification of Borrelia spirochaetes in Ixodes ricinus . . J Med Microbiol 59:, 309–314. [CrossRef] [PubMed]
    [Google Scholar]
  57. Wormser G. P. , Masters E. , Liveris D. , Nowakowski J. , Nadelman R. B. , Holmgren D. , Bittker S. , Cooper D. , Wang G. , Schwartz I. . ( 2005a; ). Microbiologic evaluation of patients from Missouri with erythema migrans. . Clin Infect Dis 40:, 423–428. [CrossRef] [PubMed]
    [Google Scholar]
  58. Wormser G. P. , Masters E. , Nowakowski J. , McKenna D. , Holmgren D. , Ma K. , Ihde L. , Cavaliere L. F. , Nadelman R. B. . ( 2005b; ). Prospective clinical evaluation of patients from Missouri and New York with erythema migrans-like skin lesions. . Clin Infect Dis 41:, 958–965. [CrossRef] [PubMed]
    [Google Scholar]
  59. Wormser G. P. , Liveris D. , Hanincová K. , Brisson D. , Ludin S. , Stracuzzi V. J. , Embers M. E. , Philipp M. T. , Levin A. . & other authors ( 2008; ). Effect of Borrelia burgdorferi genotype on the sensitivity of C6 and 2-tier testing in North American patients with culture-confirmed Lyme disease. . Clin Infect Dis 47:, 910–914. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.073122-0
Loading
/content/journal/jmm/10.1099/jmm.0.073122-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error