1887

Abstract

The hage-hock rotein (Psp) system is believed to manage membrane stress in all and has recently emerged as being important for virulence in several pathogenic species of this phylum. The core of the Psp system consists of the operon and the distantly located gene. In serovar Typhimurium (. Typhimurium), it has recently been reported that PspA is essential for systemic infection of mice, but only in NRAMP1 mice, signifying that attenuation is related to coping with divalent cation starvation in the intracellular environment. In the present study, we investigated the contribution of individual genes to virulence of . Typhimurium. Interestingly, deletion of the whole set of genes caused attenuation in both NRAMP1 and NRAMP1 mice, indicating that one or more of the genes contribute to virulence independently of NRAMP1 expression in the host. Investigations of single gene mutants showed that knock out of reduced virulence in both types of mice, while deletion of only caused attenuation in NRAMP1 mice, and deletion of had a minor effect in NRAMP1 mice, while deletions of either or did not affect virulence. Experiments addressed at elucidating the role of PspB in virulence revealed that PspB is dispensable for uptake to and intracellular replication in cultured macrophages and resistance to complement-induced killing. Furthermore, the Psp system of Typhimurium was dispensable during pIV-induced secretin stress. In conclusion, our results demonstrate that removal of PspB reduces virulence in . Typhimurium independently of host NRAMP1 expression, demonstrating that PspB has roles in intra-host survival distinct from the reported contributions of PspA.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.072223-0
2014-06-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/6/788.html?itemId=/content/journal/jmm/10.1099/jmm.0.072223-0&mimeType=html&fmt=ahah

References

  1. Becker L. A., Bang I. S., Crouch M. L., Fang F. C.. ( 2005;). Compensatory role of PspA, a member of the phage shock protein operon, in rpoE mutant Salmonella enterica serovar Typhimurium. . Mol Microbiol 56:, 1004–1016. [CrossRef][PubMed]
    [Google Scholar]
  2. Beuzón C. R., Holden D. W.. ( 2001;). Use of mixed infections with Salmonella strains to study virulence genes and their interactions in vivo. . Microbes Infect 3:, 1345–1352. [CrossRef][PubMed]
    [Google Scholar]
  3. Blackwell J. M., Searle S., Goswami T., Miller E. N.. ( 2000;). Understanding the multiple functions of Nramp1. . Microbes Infect 2:, 317–321. [CrossRef][PubMed]
    [Google Scholar]
  4. Chang A. C., Cohen S. N.. ( 1978;). Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. . J Bacteriol 134:, 1141–1156.[PubMed]
    [Google Scholar]
  5. Clark L., Perrett C. A., Malt L., Harward C., Humphrey S., Jepson K. A., Martinez-Argudo I., Carney L. J., La Ragione R. M.. & other authors ( 2011;). Differences in Salmonella enterica serovar Typhimurium strain invasiveness are associated with heterogeneity in SPI-1 gene expression. . Microbiology 157:, 2072–2083. [CrossRef][PubMed]
    [Google Scholar]
  6. Darwin A. J.. ( 2005;). The phage-shock-protein response. . Mol Microbiol 57:, 621–628. [CrossRef][PubMed]
    [Google Scholar]
  7. Darwin A. J.. ( 2013;). Stress relief during host infection: the phage shock protein response supports bacterial virulence in various ways. . PLoS Pathog 9:, e1003388. [CrossRef][PubMed]
    [Google Scholar]
  8. Darwin A. J., Miller V. L.. ( 2001;). The psp locus of Yersinia enterocolitica is required for virulence and for growth in vitro when the Ysc type III secretion system is produced. . Mol Microbiol 39:, 429–445. [CrossRef][PubMed]
    [Google Scholar]
  9. Datsenko K. A., Wanner B. L.. ( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. . Proc Natl Acad Sci U S A 97:, 6640–6645. [CrossRef][PubMed]
    [Google Scholar]
  10. Dworkin J., Jovanovic G., Model P.. ( 2000;). The PspA protein of Escherichia coli is a negative regulator of ζ54-dependent transcription. . J Bacteriol 182:, 311–319. [CrossRef][PubMed]
    [Google Scholar]
  11. Elderkin S., Bordes P., Jones S., Rappas M., Buck M.. ( 2005;). Molecular determinants for PspA-mediated repression of the AAA transcriptional activator PspF. . J Bacteriol 187:, 3238–3248. [CrossRef][PubMed]
    [Google Scholar]
  12. Enomoto M., Stocker B. A.. ( 1974;). Transduction by phage P1kc in Salmonella typhimurium. . Virology 60:, 503–514. [CrossRef][PubMed]
    [Google Scholar]
  13. Eriksson S., Lucchini S., Thompson A., Rhen M., Hinton J. C.. ( 2003;). Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. . Mol Microbiol 47:, 103–118. [CrossRef][PubMed]
    [Google Scholar]
  14. Fink S. L., Cookson B. T.. ( 2007;). Pyroptosis and host cell death responses during Salmonella infection. . Cell Microbiol 9:, 2562–2570. [CrossRef][PubMed]
    [Google Scholar]
  15. Galán J. E.. ( 1996;). Molecular genetic bases of Salmonella entry into host cells. . Mol Microbiol 20:, 263–271. [CrossRef][PubMed]
    [Google Scholar]
  16. Galán J. E.. ( 2008;). Energizing type III secretion machines: what is the fuel?. Nat Struct Mol Biol 15:, 127–128. [CrossRef][PubMed]
    [Google Scholar]
  17. Hankamer B. D., Elderkin S. L., Buck M., Nield J.. ( 2004;). Organization of the AAA+ adaptor protein PspA is an oligomeric ring. . J Biol Chem 279:, 8862–8866. [CrossRef][PubMed]
    [Google Scholar]
  18. Haraga A., Ohlson M. B., Miller S. I.. ( 2008;). Salmonellae interplay with host cells. . Nat Rev Microbiol 6:, 53–66. [CrossRef][PubMed]
    [Google Scholar]
  19. Hautefort I., Thompson A., Eriksson-Ygberg S., Parker M. L., Lucchini S., Danino V., Bongaerts R. J., Ahmad N., Rhen M., Hinton J. C.. ( 2008;). During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems. . Cell Microbiol 10:, 958–984. [CrossRef][PubMed]
    [Google Scholar]
  20. Heffernan E. J., Reed S., Hackett J., Fierer J., Roudier C., Guiney D.. ( 1992;). Mechanism of resistance to complement-mediated killing of bacteria encoded by the Salmonella typhimurium virulence plasmid gene rck. . J Clin Invest 90:, 953–964. [CrossRef][PubMed]
    [Google Scholar]
  21. Hensel M., Shea J. E., Waterman S. R., Mundy R., Nikolaus T., Banks G., Vazquez-Torres A., Gleeson C., Fang F. C., Holden D. W.. ( 1998;). Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. . Mol Microbiol 30:, 163–174. [CrossRef][PubMed]
    [Google Scholar]
  22. Ho D. K., Tissari J., Järvinen H. M., Blom A. M., Meri S., Jarva H.. ( 2011;). Functional recruitment of human complement inhibitor C4B-binding protein to outer membrane protein Rck of Salmonella. . PLoS ONE 6:, e27546. [CrossRef][PubMed]
    [Google Scholar]
  23. Horstman N. K., Darwin A. J.. ( 2012;). Phage shock proteins B and C prevent lethal cytoplasmic membrane permeability in Yersinia enterocolitica. . Mol Microbiol 85:, 445–460. [CrossRef][PubMed]
    [Google Scholar]
  24. Huvet M., Toni T., Sheng X., Thorne T., Jovanovic G., Engl C., Buck M., Pinney J. W., Stumpf M. P.. ( 2011;). The evolution of the phage shock protein response system: interplay between protein function, genomic organization, and system function. . Mol Biol Evol 28:, 1141–1155. [CrossRef][PubMed]
    [Google Scholar]
  25. Jelsbak L., Ingmer H., Valihrach L., Cohn M. T., Christiansen M. H., Kallipolitis B. H., Frees D.. ( 2010;). The chaperone ClpX stimulates expression of Staphylococcus aureus protein A by Rot dependent and independent pathways. . PLoS ONE 5:, e12752. [CrossRef][PubMed]
    [Google Scholar]
  26. Jelsbak L., Thomsen L. E., Wallrodt I., Jensen P. R., Olsen J. E.. ( 2012;). Polyamines are required for virulence in Salmonella enterica serovar Typhimurium. . PLoS ONE 7:, e36149. [CrossRef][PubMed]
    [Google Scholar]
  27. Joly N., Burrows P. C., Engl C., Jovanovic G., Buck M.. ( 2009;). A lower-order oligomer form of phage shock protein A (PspA) stably associates with the hexameric AAA+ transcription activator protein PspF for negative regulation. . J Mol Biol 394:, 764–775. [CrossRef][PubMed]
    [Google Scholar]
  28. Joly N., Engl C., Jovanovic G., Huvet M., Toni T., Sheng X., Stumpf M. P., Buck M.. ( 2010;). Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. . FEMS Microbiol Rev 34:, 797–827.[PubMed]
    [Google Scholar]
  29. Jovanovic G., Weiner L., Model P.. ( 1996;). Identification, nucleotide sequence, and characterization of PspF, the transcriptional activator of the Escherichia coli stress-induced psp operon. . J Bacteriol 178:, 1936–1945.[PubMed]
    [Google Scholar]
  30. Jovanovic G., Lloyd L. J., Stumpf M. P., Mayhew A. J., Buck M.. ( 2006;). Induction and function of the phage shock protein extracytoplasmic stress response in Escherichia coli. . J Biol Chem 281:, 21147–21161. [CrossRef][PubMed]
    [Google Scholar]
  31. Jovanovic G., Engl C., Buck M.. ( 2009;). Physical, functional and conditional interactions between ArcAB and phage shock proteins upon secretin-induced stress in Escherichia coli. . Mol Microbiol 74:, 16–28. [CrossRef][PubMed]
    [Google Scholar]
  32. Jovanovic G., Metha P., McDonald C., Davidson A. C., Uzdavinyz P., Ying L., Buck M.. ( 2014;). The N-terminal amphipathic helices determine regulatory and effector functions of phage shock protein A (PspA) in Escherichia coli. . J Mol Biol 426:, 1498–1511. [CrossRef][PubMed]
    [Google Scholar]
  33. Karlinsey J. E., Maguire M. E., Becker L. A., Crouch M. L., Fang F. C.. ( 2010;). The phage shock protein PspA facilitates divalent metal transport and is required for virulence of Salmonella enterica sv. Typhimurium. . Mol Microbiol 78:, 669–685. [CrossRef][PubMed]
    [Google Scholar]
  34. Knodler L. A., Bestor A., Ma C., Hansen-Wester I., Hensel M., Vallance B. A., Steele-Mortimer O.. ( 2005;). Cloning vectors and fluorescent proteins can significantly inhibit Salmonella enterica virulence in both epithelial cells and macrophages: implications for bacterial pathogenesis studies. . Infect Immun 73:, 7027–7031. [CrossRef][PubMed]
    [Google Scholar]
  35. Kröger C., Colgan A., Srikumar S., Händler K., Sivasankaran S. K., Hammarlöf D. L., Canals R., Grissom J. E., Conway T.. & other authors ( 2013;). An infection-relevant transcriptomic compendium for Salmonella enterica serovar Typhimurium. . Cell Host Microbe 14:, 683–695. [CrossRef][PubMed]
    [Google Scholar]
  36. Lloyd L. J., Jones S. E., Jovanovic G., Gyaneshwar P., Rolfe M. D., Thompson A., Hinton J. C., Buck M.. ( 2004;). Identification of a new member of the phage shock protein response in Escherichia coli, the phage shock protein G (PspG). . J Biol Chem 279:, 55707–55714. [CrossRef][PubMed]
    [Google Scholar]
  37. Mastroeni P., Grant A. J.. ( 2011;). Spread of Salmonella enterica in the body during systemic infection: unravelling host and pathogen determinants. . Expert Rev Mol Med 13:, e12. [CrossRef][PubMed]
    [Google Scholar]
  38. Minamino T., Namba K.. ( 2008;). Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export. . Nature 451:, 485–488. [CrossRef][PubMed]
    [Google Scholar]
  39. Model P., Jovanovic G., Dworkin J.. ( 1997;). The Escherichia coli phage-shock-protein (psp) operon. . Mol Microbiol 24:, 255–261. [CrossRef][PubMed]
    [Google Scholar]
  40. Núñez-Hernández C., Tierrez A., Ortega A. D., Pucciarelli M. G., Godoy M., Eisman B., Casadesús J., García-del Portillo F.. ( 2013;). Genome expression analysis of nonproliferating intracellular Salmonella enterica serovar Typhimurium unravels an acid pH-dependent PhoP–PhoQ response essential for dormancy. . Infect Immun 81:, 154–165. [CrossRef][PubMed]
    [Google Scholar]
  41. Plant J., Glynn A. A.. ( 1974;). Natural resistance to Salmonella infection, delayed hypersensitivity and Ir genes in different strains of mice. . Nature 248:, 345–347. [CrossRef][PubMed]
    [Google Scholar]
  42. Shea J. E., Hensel M., Gleeson C., Holden D. W.. ( 1996;). Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. . Proc Natl Acad Sci U S A 93:, 2593–2597. [CrossRef][PubMed]
    [Google Scholar]
  43. Standar K., Mehner D., Osadnik H., Berthelmann F., Hause G., Lünsdorf H., Brüser T.. ( 2008;). PspA can form large scaffolds in Escherichia coli. . FEBS Lett 582:, 3585–3589. [CrossRef][PubMed]
    [Google Scholar]
  44. Thomsen L. E., Chadfield M. S., Bispham J., Wallis T. S., Olsen J. E., Ingmer H.. ( 2003;). Reduced amounts of LPS affect both stress tolerance and virulence of Salmonella enterica serovar Dublin. . FEMS Microbiol Lett 228:, 225–231. [CrossRef][PubMed]
    [Google Scholar]
  45. Wallis T. S., Galyov E. E.. ( 2000;). Molecular basis of Salmonella-induced enteritis. . Mol Microbiol 36:, 997–1005. [CrossRef][PubMed]
    [Google Scholar]
  46. Wallrodt I., Jelsbak L., Thorndahl L., Thomsen L. E., Lemire S., Olsen J. E.. ( 2013;). The putative thiosulfate sulfurtransferases PspE and GlpE contribute to virulence of Salmonella Typhimurium in the mouse model of systemic disease. . PLoS ONE 8:, e70829. [CrossRef][PubMed]
    [Google Scholar]
  47. Watson P. R., Galyov E. E., Paulin S. M., Jones P. W., Wallis T. S.. ( 1998;). Mutation of invH, but not stn, reduces Salmonella-induced enteritis in cattle. . Infect Immun 66:, 1432–1438.[PubMed]
    [Google Scholar]
  48. Weiner L., Brissette J. L., Model P.. ( 1991;). Stress-induced expression of the Escherichia coli phage shock protein operon is dependent on sigma 54 and modulated by positive and negative feedback mechanisms. . Genes Dev 5:, 1912–1923. [CrossRef][PubMed]
    [Google Scholar]
  49. Yamaguchi S., Darwin A. J.. ( 2012;). Recent findings about the Yersinia enterocolitica phage shock protein response. . J Microbiol 50:, 1–7. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.072223-0
Loading
/content/journal/jmm/10.1099/jmm.0.072223-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error