1887

Abstract

The aims of this study were to investigate any change in PCR ribotypes and to determine the antimicrobial resistance of common PCR ribotypes over a 10-year period in a tertiary care hospital. We conducted PCR ribotyping, antimicrobial susceptibility testing and DNA gyrase sequencing to identify changes in 1407 non-duplicated isolates obtained between 2000 and 2009. A total of 74 different ribotypes were found. The most prevalent ribotype was ribotype 001 (26.1 %). The prevalence of ribotype 017 was 17 % and that of ribotype 014/020 was 9.6 %. Ribotyping showed that the prevalence of ribotype 001 decreased and the prevalence of ribotypes 017, 014/020 and 018 increased over the 10 years. Antimicrobial resistance rates in prevalent ribotypes were: clindamycin, 81 %; cefotetan, 19 %; moxifloxacin, 42 %; imipenem, 8 %; ciprofloxacin, 100 % and erythromycin, 80 %. Ribotype 018 showed greater antimicrobial resistance than other ribotypes. All ribotype 018 strains showing moxifloxacin resistance had a substitution of a coding amino acid (Thr82 to Ile). This study will help the understanding of PCR ribotype trends and antimicrobial resistance of in Korea.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.072082-0
2014-06-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/6/819.html?itemId=/content/journal/jmm/10.1099/jmm.0.072082-0&mimeType=html&fmt=ahah

References

  1. Ackermann G., Tang Y. J., Kueper R., Heisig P., Rodloff A. C., Silva J. Jr, Cohen S. H.. ( 2001;). Resistance to moxifloxacin in toxigenic Clostridium difficile isolates is associated with mutations in gyrA. . Antimicrob Agents Chemother 45:, 2348–2353. [CrossRef][PubMed]
    [Google Scholar]
  2. Ackermann G., Degner A., Cohen S. H., Silva J. Jr, Rodloff A. C.. ( 2003;). Prevalence and association of macrolide-lincosamide-streptogramin B (MLSB) resistance with resistance to moxifloxacin in Clostridium difficile. . J Antimicrob Chemother 51:, 599–603. [CrossRef][PubMed]
    [Google Scholar]
  3. Barbut F., Decré D., Lalande V., Burghoffer B., Noussair L., Gigandon A., Espinasse F., Raskine L., Robert J.. & other authors ( 2005;). Clinical features of Clostridium difficile-associated diarrhoea due to binary toxin (actin-specific ADP-ribosyltransferase)-producing strains. . J Med Microbiol 54:, 181–185. [CrossRef][PubMed]
    [Google Scholar]
  4. Barbut F., Mastrantonio P., Delmée M., Brazier J., Kuijper E., Poxton I..European Study Group on Clostridium difficile (ESGCD) ( 2007;). Prospective study of Clostridium difficile infections in Europe with phenotypic and genotypic characterisation of the isolates. . Clin Microbiol Infect 13:, 1048–1057. [CrossRef][PubMed]
    [Google Scholar]
  5. Bauer M. P., Notermans D. W., van Benthem B. H., Brazier J. S., Wilcox M. H., Rupnik M., Monnet D. L., van Dissel J. T., Kuijper E. J..ECDIS Study Group ( 2011;). Clostridium difficile infection in Europe: a hospital-based survey. . Lancet 377:, 63–73. [CrossRef][PubMed]
    [Google Scholar]
  6. Bourgault A. M., Lamothe F., Loo V. G., Poirier L..CDAD-CSI Study Group ( 2006;). In vitro susceptibility of Clostridium difficile clinical isolates from a multi-institutional outbreak in Southern Québec, Canada. . Antimicrob Agents Chemother 50:, 3473–3475. [CrossRef][PubMed]
    [Google Scholar]
  7. Cheknis A. K., Zukowski W. E., Petrella A. K., Nagaro J., Sambol S. P., Figueroa I., Li L.Q., Perdue E., Gelone S. P.. & other authors ( 2009;). Prevalence of REA types of Clostridium difficile from U.S. hospitals (2006–2009). . In Abstracts of the 49th Interscience Conference on Antimicrobial Agents and Chemotherapy, abstract K-2075. San Francisco, CA:.
  8. CLSI ( 2012;). Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard M11–A8. . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  9. CLSI ( 2013;). Performance Standards for Antimicrobial Susceptibility Testing; 23rd Informational Supplement M100–S23. . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  10. Dridi L., Tankovic J., Burghoffer B., Barbut F., Petit J. C.. ( 2002;). gyrA and gyrB mutations are implicated in cross-resistance to ciprofloxacin and moxifloxacin in Clostridium difficile. . Antimicrob Agents Chemother 46:, 3418–3421. [CrossRef][PubMed]
    [Google Scholar]
  11. Drudy D., Quinn T., O’Mahony R., Kyne L., O’Gaora P., Fanning S.. ( 2006;). High-level resistance to moxifloxacin and gatifloxacin associated with a novel mutation in gyrB in toxin-A-negative, toxin-B-positive Clostridium difficile. . J Antimicrob Chemother 58:, 1264–1267. [CrossRef][PubMed]
    [Google Scholar]
  12. Heddle J., Maxwell A.. ( 2002;). Quinolone-binding pocket of DNA gyrase: role of GyrB. . Antimicrob Agents Chemother 46:, 1805–1815. [CrossRef][PubMed]
    [Google Scholar]
  13. Huang H., Fang H., Weintraub A., Nord C. E.. ( 2009a;). Distinct ribotypes and rates of antimicrobial drug resistance in Clostridium difficile from Shanghai and Stockholm. . Clin Microbiol Infect 15:, 1170–1173. [CrossRef][PubMed]
    [Google Scholar]
  14. Huang H., Weintraub A., Fang H., Nord C. E.. ( 2009b;). Antimicrobial resistance in Clostridium difficile. . Int J Antimicrob Agents 34:, 516–522. [CrossRef][PubMed]
    [Google Scholar]
  15. Huang H., Wu S., Wang M., Zhang Y., Fang H., Palmgren A. C., Weintraub A., Nord C. E.. ( 2009c;). Clostridium difficile infections in a Shanghai hospital: antimicrobial resistance, toxin profiles and ribotypes. . Int J Antimicrob Agents 33:, 339–342. [CrossRef][PubMed]
    [Google Scholar]
  16. Kato H., Kato N., Watanabe K., Iwai N., Nakamura H., Yamamoto T., Suzuki K., Kim S. M., Chong Y., Wasito E. B.. ( 1998;). Identification of toxin A-negative, toxin B-positive Clostridium difficile by PCR. . J Clin Microbiol 36:, 2178–2182.[PubMed]
    [Google Scholar]
  17. Kim H., Jeong S. H., Roh K. H., Hong S. G., Kim J. W., Shin M. G., Kim M. N., Shin H. B., Uh Y.. & other authors ( 2010;). Investigation of toxin gene diversity, molecular epidemiology, and antimicrobial resistance of Clostridium difficile isolated from 12 hospitals in South Korea. . Korean J Lab Med 30:, 491–497. [CrossRef][PubMed]
    [Google Scholar]
  18. Lyerly D. M., Krivan H. C., Wilkins T. D.. ( 1988;). Clostridium difficile: its disease and toxins. . Clin Microbiol Rev 1:, 1–18.[PubMed]
    [Google Scholar]
  19. McDonald L. C., Killgore G. E., Thompson A., Owens R. C. Jr, Kazakova S. V., Sambol S. P., Johnson S., Gerding D. N.. ( 2005;). An epidemic, toxin gene-variant strain of Clostridium difficile. . N Engl J Med 353:, 2433–2441. [CrossRef][PubMed]
    [Google Scholar]
  20. O’Donoghue C., Kyne L.. ( 2011;). Update on Clostridium difficile infection. . Curr Opin Gastroenterol 27:, 38–47. [CrossRef][PubMed]
    [Google Scholar]
  21. Sawabe E., Kato H., Osawa K., Chida T., Tojo N., Arakawa Y., Okamura N.. ( 2007;). Molecular analysis of Clostridium difficile at a university teaching hospital in Japan: a shift in the predominant type over a five-year period. . Eur J Clin Microbiol Infect Dis 26:, 695–703. [CrossRef][PubMed]
    [Google Scholar]
  22. Spigaglia P., Barbanti F., Mastrantonio P., Brazier J. S., Barbut F., Delmée M., Kuijper E., Poxton I. R..European Study Group on Clostridium difficile (ESGCD) ( 2008;). Fluoroquinolone resistance in Clostridium difficile isolates from a prospective study of C. difficile infections in Europe. . J Med Microbiol 57:, 784–789. [CrossRef][PubMed]
    [Google Scholar]
  23. Spigaglia P., Barbanti F., Dionisi A. M., Mastrantonio P.. ( 2010;). Clostridium difficile isolates resistant to fluoroquinolones in Italy: emergence of PCR ribotype 018. . J Clin Microbiol 48:, 2892–2896. [CrossRef][PubMed]
    [Google Scholar]
  24. Stubbs S. L., Brazier J. S., O’Neill G. L., Duerden B. I.. ( 1999;). PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. . J Clin Microbiol 37:, 461–463.[PubMed]
    [Google Scholar]
  25. Stubbs S., Rupnik M., Gibert M., Brazier J., Duerden B., Popoff M.. ( 2000;). Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile. . FEMS Microbiol Lett 186:, 307–312. [CrossRef][PubMed]
    [Google Scholar]
  26. Tae C. H., Jung S. A., Song H. J., Kim S. E., Choi H. J., Lee M., Hwang Y., Kim H., Lee K.. ( 2009;). The first case of antibiotic-associated colitis by Clostridium difficile PCR ribotype 027 in Korea. . J Korean Med Sci 24:, 520–524. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.072082-0
Loading
/content/journal/jmm/10.1099/jmm.0.072082-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error