1887

Abstract

Serotype-specific quantification data are essential for elucidating the complex epidemiology of and evaluating pneumococcal vaccine efficacy. Various PCR-based assays have been developed to circumvent the drawback of labour-intensive and time-consuming culture-based procedures for serotype determination and quantification of pneumococcus. Here, we applied a nanofluidic real-time PCR system to establish a novel assay. Twenty-nine primer pairs, 13 of which were newly designed, were selected for the assay to cover 50 serotypes including all currently available conjugate and polysaccharide vaccine serotypes. All primer pairs were evaluated for their sensitivity, specificity, efficiency, repeatability, accuracy and reproducibility on the Fluidigm Biomark HD System, a nanofluidic real-time PCR system, by drawing standard curves with a serial dilution of purified DNA. We applied the assay to 52 nasopharyngeal swab samples from patients with pneumonia confirmed by chest X-ray to validate its accuracy. Minimum detection levels of this novel assay using the nanofluidic real-time PCR system were comparable to the conventional PCR-based assays (between 30 and 300 copies per reaction). They were specific to their targets with good repeatability ( of copy number of 0.1), accuracy (within ±0.1 fold difference in log copy number) and reproducibility ( of copy number of 0.1). When artificially mixed DNA samples consisting of multiple serotypes in various ratios were tested, all the serotypes were detected proportionally, including a minor serotype of one in 1000 copies. In the nasopharyngeal samples, the PCR system detected all the culture-positive samples and 22 out of 23 serotypes identified by the conventional method were matched with PCR results. We conclude that this novel assay, which is able to differentially quantify 29 pneumococcus groups for 45 test samples in a single run, is applicable to the large-scale epidemiological study of pneumococcus. We believe that this assay will facilitate our understanding of the roles of serotype-specific bacterial loads and implications of multiple serotype detections in pneumococcal diseases.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.071464-0
2014-04-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/4/528.html?itemId=/content/journal/jmm/10.1099/jmm.0.071464-0&mimeType=html&fmt=ahah

References

  1. Abdeldaim G., Herrmann B., Mölling P., Holmberg H., Blomberg J., Olcén P., Strålin K.. ( 2010;). Usefulness of real-time PCR for lytA, ply, and Spn9802 on plasma samples for the diagnosis of pneumococcal pneumonia. . Clin Microbiol Infect 16:, 1135–1141. [CrossRef][PubMed]
    [Google Scholar]
  2. Albrich W. C., Madhi S. A., Adrian P. V., van Niekerk N., Mareletsi T., Cutland C., Wong M., Khoosal M., Karstaedt A.. & other authors ( 2012;). Use of a rapid test of pneumococcal colonization density to diagnose pneumococcal pneumonia. . Clin Infect Dis 54:, 601–609. [CrossRef][PubMed]
    [Google Scholar]
  3. Antonio M., Hakeem I., Sankareh K., Cheung Y. B., Adegbola R. A.. ( 2009;). Evaluation of sequential multiplex PCR for direct detection of multiple serotypes of Streptococcus pneumoniae from nasopharyngeal secretions. . J Med Microbiol 58:, 296–302. [CrossRef][PubMed]
    [Google Scholar]
  4. Azzari C., Moriondo M., Indolfi G., Massai C., Becciolini L., de Martino M., Resti M.. ( 2008;). Molecular detection methods and serotyping performed directly on clinical samples improve diagnostic sensitivity and reveal increased incidence of invasive disease by Streptococcus pneumoniae in Italian children. . J Med Microbiol 57:, 1205–1212. [CrossRef][PubMed]
    [Google Scholar]
  5. Azzari C., Moriondo M., Indolfi G., Cortimiglia M., Canessa C., Becciolini L., Lippi F., de Martino M., Resti M.. ( 2010;). Realtime PCR is more sensitive than multiplex PCR for diagnosis and serotyping in children with culture negative pneumococcal invasive disease. . PLoS ONE 5:, e9282. [CrossRef][PubMed]
    [Google Scholar]
  6. Bentley S. D., Aanensen D. M., Mavroidi A., Saunders D., Rabbinowitsch E., Collins M., Donohoe K., Harris D., Murphy L.. & other authors ( 2006;). Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. . PLoS Genet 2:, e31. [CrossRef][PubMed]
    [Google Scholar]
  7. Brito D. A., Ramirez M., de Lencastre H.. ( 2003;). Serotyping Streptococcus pneumoniae by multiplex PCR. . J Clin Microbiol 41:, 2378–2384. [CrossRef][PubMed]
    [Google Scholar]
  8. Bronsdon M. A., O’Brien K. L., Facklam R. R., Whitney C. G., Schwartz B., Carlone G. M.. ( 2004;). Immunoblot method to detect Streptococcus pneumoniae and identify multiple serotypes from nasopharyngeal secretions. . J Clin Microbiol 42:, 1596–1600. [CrossRef][PubMed]
    [Google Scholar]
  9. Bustin S. A., Benes V., Garson J. A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M. W.. & other authors ( 2009;). The MIQE guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. . Clin Chem 55:, 611–622. [CrossRef][PubMed]
    [Google Scholar]
  10. Carrol E. D., Guiver M., Nkhoma S., Mankhambo L. A., Marsh J., Balmer P., Banda D. L., Jeffers G., White S. A.. & other authors ( 2007;). High pneumococcal DNA loads are associated with mortality in Malawian children with invasive pneumococcal disease. . Pediatr Infect Dis J 26:, 416–422. [CrossRef][PubMed]
    [Google Scholar]
  11. Carvalho M. da G., Tondella M. L., McCaustland K., Weidlich L., McGee L., Mayer L. W., Steigerwalt A., Whaley M., Facklam R. R.. & other authors ( 2007;). Evaluation and improvement of real-time PCR assays targeting lytA, ply, and psaA genes for detection of pneumococcal DNA. . J Clin Microbiol 45:, 2460–2466. [CrossRef][PubMed]
    [Google Scholar]
  12. Chaves F., Campelo C., Sanz F., Otero J. R.. ( 2003;). Meningitis due to mixed infection with penicillin-resistant and penicillin-susceptible strains of Streptococcus pneumoniae. . J Clin Microbiol 41:, 512–513. [CrossRef][PubMed]
    [Google Scholar]
  13. Corless C. E., Guiver M., Borrow R., Edwards-Jones V., Fox A. J., Kaczmarski E. B.. ( 2001;). Simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in suspected cases of meningitis and septicemia using real-time PCR. . J Clin Microbiol 39:, 1553–1558. [CrossRef][PubMed]
    [Google Scholar]
  14. de Andrade A. L., Pimenta F. C., Laval C. A., de Andrade J. G., Guerra M. L., Brandileone M. C.. ( 2004;). Invasive pneumococcal infection in a healthy infant caused by two different serotypes. . J Clin Microbiol 42:, 2345–2346. [CrossRef][PubMed]
    [Google Scholar]
  15. Dias C. A., Teixeira L. M., Carvalho M. G., Beall B.. ( 2007;). Sequential multiplex PCR for determining capsular serotypes of pneumococci recovered from Brazilian children. . J Med Microbiol 56:, 1185–1188. [CrossRef][PubMed]
    [Google Scholar]
  16. Greve T., Møller J. K.. ( 2012;). Accuracy of using the lytA gene to distinguish Streptococcus pneumoniae from related species. . J Med Microbiol 61:, 478–482. [CrossRef][PubMed]
    [Google Scholar]
  17. Harboe Z. B., Thomsen R. W., Riis A., Valentiner-Branth P., Christensen J. J., Lambertsen L., Krogfelt K. A., Konradsen H. B., Benfield T. L.. ( 2009;). Pneumococcal serotypes and mortality following invasive pneumococcal disease: a population-based cohort study. . PLoS Med 6:, e1000081. [CrossRef][PubMed]
    [Google Scholar]
  18. Johnson H. L., Deloria-Knoll M., Levine O. S., Stoszek S. K., Freimanis Hance L., Reithinger R., Muenz L. R., O’Brien K. L.. ( 2010;). Systematic evaluation of serotypes causing invasive pneumococcal disease among children under five: the Pneumococcal Global Serotype Project. . PLoS Med 7:, e1000348. [CrossRef][PubMed]
    [Google Scholar]
  19. Kaltoft M. S., Skov Sørensen U. B., Slotved H. C., Konradsen H. B.. ( 2008;). An easy method for detection of nasopharyngeal carriage of multiple Streptococcus pneumoniae serotypes. . J Microbiol Methods 75:, 540–544. [CrossRef][PubMed]
    [Google Scholar]
  20. Kee C., Fatovich D. M., Palladino S., Kay I. D., Pryce T. M., Flexman J., Murray R., Waterer G. W.. ( 2010;). Specificity of a quantitative real-time polymerase chain reaction assay for the detection of invasive pneumococcal disease: identifying Streptococcus pneumoniae using quantitative polymerase chain reaction. . Chest 137:, 243–244. [CrossRef][PubMed]
    [Google Scholar]
  21. Kong F., Brown M., Sabananthan A., Zeng X., Gilbert G. L.. ( 2006;). Multiplex PCR-based reverse line blot hybridization assay to identify 23 Streptococcus pneumoniae polysaccharide vaccine serotypes. . J Clin Microbiol 44:, 1887–1891. [CrossRef][PubMed]
    [Google Scholar]
  22. Lawrence E. R., Griffiths D. B., Martin S. A., George R. C., Hall L. M. C.. ( 2003;). Evaluation of semiautomated multiplex PCR assay for determination of Streptococcus pneumoniae serotypes and serogroups. . J Clin Microbiol 41:, 601–607. [CrossRef][PubMed]
    [Google Scholar]
  23. Mavroidi A., Aanensen D. M., Godoy D., Skovsted I. C., Kaltoft M. S., Reeves P. R., Bentley S. D., Spratt B. G.. ( 2007;). Genetic relatedness of the Streptococcus pneumoniae capsular biosynthetic loci. . J Bacteriol 189:, 7841–7855. [CrossRef][PubMed]
    [Google Scholar]
  24. Moore C. E., Sengduangphachanh A., Thaojaikong T., Sirisouk J., Foster D., Phetsouvanh R., McGee L., Crook D. W., Newton P. N., Peacock S. J.. ( 2010;). Enhanced determination of Streptococcus pneumoniae serotypes associated with invasive disease in Laos by using a real-time polymerase chain reaction serotyping assay with cerebrospinal fluid. . Am J Trop Med Hyg 83:, 451–457. [CrossRef][PubMed]
    [Google Scholar]
  25. Morais L., Carvalho M. G., Roca A., Flannery B., Mandomando I., Soriano-Gabarró M., Sigauque B., Alonso P., Beall B.. ( 2007;). Sequential multiplex PCR for identifying pneumococcal capsular serotypes from South-Saharan African clinical isolates. . J Med Microbiol 56:, 1181–1184. [CrossRef][PubMed]
    [Google Scholar]
  26. Muñoz-Almagro C., Gala S., Selva L., Jordan I., Tarragó D., Pallares R.. ( 2011;). DNA bacterial load in children and adolescents with pneumococcal pneumonia and empyema. . Eur J Clin Microbiol Infect Dis 30:, 327–335. [CrossRef][PubMed]
    [Google Scholar]
  27. Pai R., Gertz R. E., Beall B.. ( 2006;). Sequential multiplex PCR approach for determining capsular serotypes of Streptococcus pneumoniae isolates. . J Clin Microbiol 44:, 124–131. [CrossRef][PubMed]
    [Google Scholar]
  28. Pimenta F. C., Roundtree A., Soysal A., Bakir M., du Plessis M., Wolter N., von Gottberg A., McGee L., Carvalho M. G., Beall B.. ( 2013;). Sequential triplex real-time PCR assay for detecting 21 pneumococcal capsular serotypes that account for a high global disease burden. . J Clin Microbiol 51:, 647–652. [CrossRef][PubMed]
    [Google Scholar]
  29. Rello J., Lisboa T., Lujan M., Gallego M., Kee C., Kay I., Lopez D., Waterer G. W..DNA-Neumococo Study Group ( 2009;). Severity of pneumococcal pneumonia associated with genomic bacterial load. . Chest 136:, 832–840. [CrossRef][PubMed]
    [Google Scholar]
  30. Rivera-Olivero I. A., Blommaart M., Bogaert D., Hermans P. W., de Waard J. H.. ( 2009;). Multiplex PCR reveals a high rate of nasopharyngeal pneumococcal 7-valent conjugate vaccine serotypes co-colonizing indigenous Warao children in Venezuela. . J Med Microbiol 58:, 584–587. [CrossRef][PubMed]
    [Google Scholar]
  31. Saha S. K., Darmstadt G. L., Baqui A. H., Hossain B., Islam M., Foster D., Al-Emran H., Naheed A., Arifeen S. E.. & other authors ( 2008;). Identification of serotype in culture negative pneumococcal meningitis using sequential multiplex PCR: implication for surveillance and vaccine design. . PLoS ONE 3:, e3576. [CrossRef][PubMed]
    [Google Scholar]
  32. Spurgeon S. L., Jones R. C., Ramakrishnan R.. ( 2008;). High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. . PLoS ONE 3:, e1662. [CrossRef][PubMed]
    [Google Scholar]
  33. Suzuki N., Seki M., Nakano Y., Kiyoura Y., Maeno M., Yamashita Y.. ( 2005;). Discrimination of Streptococcus pneumoniae from viridans group streptococci by genomic subtractive hybridization. . J Clin Microbiol 43:, 4528–4534. [CrossRef][PubMed]
    [Google Scholar]
  34. Turner P., Hinds J., Turner C., Jankhot A., Gould K., Bentley S. D., Nosten F., Goldblatt D.. ( 2011;). Improved detection of nasopharyngeal cocolonization by multiple pneumococcal serotypes by use of latex agglutination or molecular serotyping by microarray. . J Clin Microbiol 49:, 1784–1789. [CrossRef][PubMed]
    [Google Scholar]
  35. van Haeften R., Palladino S., Kay I., Keil T., Heath C., Waterer G. W.. ( 2003;). A quantitative LightCycler PCR to detect Streptococcus pneumoniae in blood and CSF. . Diagn Microbiol Infect Dis 47:, 407–414. [CrossRef][PubMed]
    [Google Scholar]
  36. Vu H. T., Yoshida L. M., Suzuki M., Nguyen H. A., Nguyen C. D., Nguyen A. T., Oishi K., Yamamoto T., Watanabe K.. & other authors ( 2011;). Association between nasopharyngeal load of Streptococcus pneumoniae, viral coinfection, and radiologically confirmed pneumonia in Vietnamese children. . Pediatr Infect Dis J 30:, 11–18. [CrossRef][PubMed]
    [Google Scholar]
  37. Wang Q., Wang M., Kong F., Gilbert G. L., Cao B., Wang L., Feng L.. ( 2007;). Development of a DNA microarray to identify the Streptococcus pneumoniae serotypes contained in the 23-valent pneumococcal polysaccharide vaccine and closely related serotypes. . J Microbiol Methods 68:, 128–136. [CrossRef][PubMed]
    [Google Scholar]
  38. Weinberger D. M., Harboe Z. B., Sanders E. A., Ndiritu M., Klugman K. P., Rückinger S., Dagan R., Adegbola R., Cutts F.. & other authors ( 2010;). Association of serotype with risk of death due to pneumococcal pneumonia: a meta-analysis. . Clin Infect Dis 51:, 692–699. [CrossRef][PubMed]
    [Google Scholar]
  39. Weinberger D. M., Malley R., Lipsitch M.. ( 2011;). Serotype replacement in disease after pneumococcal vaccination. . Lancet 378:, 1962–1973. [CrossRef][PubMed]
    [Google Scholar]
  40. WHO ( 2010;). Changing epidemiology of pneumococcal serotypes after introduction of conjugate vaccine: July 2010 report. . Wkly Epidemiol Rec 85:, 434–436. [CrossRef][PubMed]
    [Google Scholar]
  41. WHO ( 2012;). Measuring impact of Streptococcus pneumoniae and Haemophilus influenzae type b conjugate vaccination. Immunization, Vaccines and Biologicals WHO/IVB/12.08. . http://www.who.int/immunization/documents/WHO_IVB_12.08/en/
  42. Yang S., Lin S., Khalil A., Gaydos C., Nuemberger E., Juan G., Hardick J., Bartlett J. G., Auwaerter P. G., Rothman R. E.. ( 2005;). Quantitative PCR assay using sputum samples for rapid diagnosis of pneumococcal pneumonia in adult emergency department patients. . J Clin Microbiol 43:, 3221–3226. [CrossRef][PubMed]
    [Google Scholar]
  43. Yu J., Lin J., Benjamin W. H. Jr, Waites K. B., Lee C. H., Nahm M. H.. ( 2005;). Rapid multiplex assay for serotyping pneumococci with monoclonal and polyclonal antibodies. . J Clin Microbiol 43:, 156–162. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.071464-0
Loading
/content/journal/jmm/10.1099/jmm.0.071464-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error