1887

Abstract

Bacterial contamination of platelet concentrates (PCs) poses the highest transfusion-associated infectious risk, with being a predominant contaminant. Herein, the growth dynamics of 20 strains in PCs and regular media were characterized. Strains were categorized as fast (short lag phase) or slow (long lag phase) growers in PCs. All strains were evaluated for the presence of the biofilm-associated genes by PCR, their capability to produce extracellular polysaccharide (slime) on Congo red agar plates and their ability to form surface-attached aggregates (biofilms) in glucose-supplemented trypticase soy broth (TSBg) using a crystal violet staining assay. A subset of four strains (two slow growers and two fast growers) was further examined for the ability for biofilm formation in PCs. Two of these strains carried the genes, formed slime and produced biofilms in TSBg and PCs, while the other two strains, which did not carry , did not produce slime or form biofilms in TSBg. Although the two -negative slime-negative strains did not form biofilms in media, they displayed a biofilm-positive phenotype in PCs. Although all four strains formed biofilms in PCs, the two slow growers formed significantly more biofilms than the fast growers. Furthermore, growth experiments of the two -positive strains in plasma-conditioned platelet bags containing TSBg revealed that a slow grower isolate was more likely to escape culture-based screening than a fast grower strain. Therefore, this study provides novel evidence that links biofilm formation with slow growth in PCs and suggests that slow-growing biofilm-positive would be more likely to be missed with automate culture.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.071449-0
2014-06-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/6/884.html?itemId=/content/journal/jmm/10.1099/jmm.0.071449-0&mimeType=html&fmt=ahah

References

  1. Benjamin R. J., Wagner S. J.. ( 2007;). The residual risk of sepsis: modeling the effect of concentration on bacterial detection in two-bottle culture systems and an estimation of false-negative culture rates. . Transfusion 47:, 1381–1389. [CrossRef][PubMed]
    [Google Scholar]
  2. Benjamin R. J., Dy B., Warren R., Lischka M., Eder A. F.. ( 2011;). Skin disinfection with a single-step 2% chlorhexidine swab is more effective than a two-step povidone-iodine method in preventing bacterial contamination of apheresis platelets. . Transfusion 51:, 531–538. [CrossRef][PubMed]
    [Google Scholar]
  3. Benjamin R. J., Dy B., Perez J., Eder A. F., Wagner S. J.. ( 2014;). Bacterial culture of apheresis platelets: a mathematical model of the residual rate of contamination based on unconfirmed positive results. . Vox Sang 106:, 23–30. [CrossRef][PubMed]
    [Google Scholar]
  4. Brecher M. E., Means N., Jere C. S., Heath D., Rothenberg S., Stutzman L. C.. ( 2001;). Evaluation of an automated culture system for detecting bacterial contamination of platelets: an analysis with 15 contaminating organisms. . Transfusion 41:, 477–482. [CrossRef][PubMed]
    [Google Scholar]
  5. Brecher M. E., Hay S. N., Rose A. D., Rothenberg S. J.. ( 2005;). Evaluation of BacT/ALERT plastic culture bottles for use in testing pooled whole blood-derived leukoreduced platelet-rich plasma platelets with a single contaminated unit. . Transfusion 45:, 1512–1517. [CrossRef][PubMed]
    [Google Scholar]
  6. Christensen G. D., Simpson W. A., Bisno A. L., Beachey E. H.. ( 1982;). Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. . Infect Immun 37:, 318–326.[PubMed]
    [Google Scholar]
  7. Christner M., Franke G. C., Schommer N. N., Wendt U., Wegert K., Pehle P., Kroll G., Schulze C., Buck F.. & other authors ( 2010;). The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. . Mol Microbiol 75:, 187–207. [CrossRef][PubMed]
    [Google Scholar]
  8. Corash L.. ( 2011;). Bacterial contamination of platelet components: potential solutions to prevent transfusion-related sepsis. . Expert Rev Hematol 4:, 509–525. [CrossRef][PubMed]
    [Google Scholar]
  9. Costerton W. J., Montanaro L., Balaban N., Arciola C. R.. ( 2009;). Prospecting gene therapy of implant infections. . Int J Artif Organs 32:, 689–695. (Review).[PubMed]
    [Google Scholar]
  10. de Korte D., Curvers J., de Kort W. L., Hoekstra T., van der Poel C. L., Beckers E. A., Marcelis J. H.. ( 2006;). Effects of skin disinfection method, deviation bag, and bacterial screening on clinical safety of platelet transfusions in the Netherlands. . Transfusion 46:, 476–485. [CrossRef][PubMed]
    [Google Scholar]
  11. Dumont L. J., Wood T. A., Housman M., Herschel L., Brantigan B., Heber C., Houghton J.. ( 2011;). Bacterial growth kinetics in ACD-A apheresis platelets: comparison of plasma and PAS III storage. . Transfusion 51:, 1079–1085. [CrossRef][PubMed]
    [Google Scholar]
  12. Fey P. D., Olson M. E.. ( 2010;). Current concepts in biofilm formation of Staphylococcus epidermidis.. Future Microbiol 5:, 917–933. [CrossRef][PubMed]
    [Google Scholar]
  13. Freeman D. J., Falkiner F. R., Keane C. T.. ( 1989;). New method for detecting slime production by coagulase negative staphylococci. . J Clin Pathol 42:, 872–874. [CrossRef][PubMed]
    [Google Scholar]
  14. Goldman M., Delage G., Beauregard P., Pruneau-Fortier D., Ismaïl J., Robillard P.. ( 2001;). A fatal case of transfusion-transmitted Staphylococcus epidermidis sepsis. . Transfusion 41:, 1075–1076. [CrossRef][PubMed]
    [Google Scholar]
  15. Greco C., Martincic I., Gusinjac A., Kalab M., Yang A. F., Ramírez-Arcos S.. ( 2007;). Staphylococcus epidermidis forms biofilms under simulated platelet storage conditions. . Transfusion 47:, 1143–1153. [CrossRef][PubMed]
    [Google Scholar]
  16. Greco C., Mastronardi C., Pagotto F., Mack D., Ramírez-Arcos S.. ( 2008;). Assessment of biofilm-forming ability of coagulase-negative staphylococci isolated from contaminated platelet preparations in Canada. . Transfusion 48:, 969–977.[PubMed]
    [Google Scholar]
  17. Greco C. A., Zhang J. G., Kalab M., Yi Q. L., Ramírez-Arcos S. M., Gyongyossy-Issa M. I.. ( 2010;). Effect of platelet additive solution on bacterial dynamics and their influence on platelet quality in stored platelet concentrates. . Transfusion 50:, 2344–2352. [CrossRef][PubMed]
    [Google Scholar]
  18. Greco-Stewart V. S., Brown E. E., Parr C., Kalab M., Jacobs M. R., Yomtovian R. A., Ramírez-Arcos S. M.. ( 2012;). Serratia marcescens strains implicated in adverse transfusion reactions form biofilms in platelet concentrates and demonstrate reduced detection by automated culture. . Vox Sang 102:, 212–220. [CrossRef][PubMed]
    [Google Scholar]
  19. Greco-Stewart V. S., Ali H., Kumaran D., Kalab M., Rood I. G. H., de Korte D., Ramírez-Arcos S.. ( 2013;). Biofilm formation by Staphylococcus capitis strains isolated from contaminated platelet concentrates. . J Med Microbiol 62:, 1051–1059. [CrossRef][PubMed]
    [Google Scholar]
  20. Heilmann C., Schweitzer O., Gerke C., Vanittanakom N., Mack D., Götz F.. ( 1996;). Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis.. Mol Microbiol 20:, 1083–1091. [CrossRef][PubMed]
    [Google Scholar]
  21. Hodgson S. D., Greco-Stewart V., Jimenez C. S., Sifri C. D., Brassinga A. K., Ramírez-Arcos S.. ( 2014;). Enhanced pathogenicity of biofilm-negative Staphylococcus epidermidis isolated from platelet preparations. . Transfusion 54:, 461–470. [CrossRef][PubMed]
    [Google Scholar]
  22. Hsueh J. C., Ho C. F., Chang S. H., Pan F. Z., Chen S. C., Shi M. D., Chien S. T.. ( 2009;). Blood surveillance and detection on platelet bacterial contamination associated with septic events. . Transfus Med 19:, 350–356. [CrossRef][PubMed]
    [Google Scholar]
  23. Jacobs M. R., Good C. E., Lazarus H. M., Yomtovian R. A.. ( 2008;). Relationship between bacterial load, species virulence, and transfusion reaction with transfusion of bacterially contaminated platelets. . Clin Infect Dis 46:, 1214–1220. [CrossRef][PubMed]
    [Google Scholar]
  24. Jung C.-J., Yeh C.-Y., Shun C.-T., Hsu R.-B., Cheng H.-W., Lin C.-S., Chia J.-S.. ( 2012;). Platelets enhance biofilm formation and resistance of endocarditis-inducing streptococci on the injured heart valve. . J Infect Dis 205:, 1066–1075. [CrossRef][PubMed]
    [Google Scholar]
  25. Mack D., Fischer W., Krokotsch A., Leopold K., Hartmann R., Egge H., Laufs R.. ( 1996;). The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. . J Bacteriol 178:, 175–183.[PubMed]
    [Google Scholar]
  26. Martini R., Horner R., Rodrigues M. A., Kempfer C. B., Tizotti M. K., Ratzlaff V.. ( 2012;). Bacteriological analysis of platelets and cases of septic reactions associated with transfusion of contaminated samples. . Transfus Apheresis Sci 47:, 313–318. [CrossRef][PubMed]
    [Google Scholar]
  27. Mastronardi C. C., Ramírez-Arcos S.. ( 2007;). Quantitative PCR for detection and discrimination of the bloodborne pathogen Staphylococcus epidermidis in platelet preparations using divIVA and icaA as target genes. . Can J Microbiol 53:, 1222–1231. [CrossRef][PubMed]
    [Google Scholar]
  28. McDonald C. P.. ( 2011;). Interventions implemented to reduce the risk of transmission of bacteria by transfusion in the English National Blood Service. . Transfus Med Hemother 38:, 255–258. [CrossRef][PubMed]
    [Google Scholar]
  29. Otto M.. ( 2012;). Molecular basis of Staphylococcus epidermidis infections. . Semin Immunopathol 34:, 201–214. [CrossRef][PubMed]
    [Google Scholar]
  30. Petrelli D., Zampaloni C., D’Ercole S., Prenna M., Ballarini P., Ripa S., Vitali L. A.. ( 2006;). Analysis of different genetic traits and their association with biofilm formation in Staphylococcus epidermidis isolates from central venous catheter infections. . Eur J Clin Microbiol Infect Dis 25:, 773–781. [CrossRef][PubMed]
    [Google Scholar]
  31. Qin Z., Yang X., Yang L., Jiang J., Ou Y., Molin S., Qu D.. ( 2007;). Formation and properties of in vitro biofilms of ica-negative Staphylococcus epidermidis clinical isolates. . J Med Microbiol 56:, 83–93. [CrossRef][PubMed]
    [Google Scholar]
  32. Ramírez-Arcos S., Jenkins C., Dion J., Bernier F., Delage G., Goldman M.. ( 2007;). Canadian experience with detection of bacterial contamination in apheresis platelets. . Transfusion 47:, 421–429. [CrossRef][PubMed]
    [Google Scholar]
  33. Ramírez-Arcos S., Kou Y., Mastronardi C., Perkins H., Goldman M.. ( 2011;). Bacterial screening of outdated buffy coat platelet pools using a culture system and a rapid immunoassay. . Transfusion 51:, 2566–2572. [CrossRef][PubMed]
    [Google Scholar]
  34. Rohde H., Burandt E. C., Siemssen N., Frommelt L., Burdelski C., Wurster S., Scherpe S., Davies A. P., Harris L. G.. & other authors ( 2007;). Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. . Biomaterials 28:, 1711–1720. [CrossRef][PubMed]
    [Google Scholar]
  35. Rood I. G. H., de Korte D., Ramírez-Arcos S., Savelkoul P. H., Pettersson A.. ( 2011;). Distribution, origin and contamination risk of coagulase-negative staphylococci from platelet concentrates. . J Med Microbiol 60:, 592–599. [CrossRef][PubMed]
    [Google Scholar]
  36. Sireis W., Rüster B., Daiss C., Hourfar M. K., Capalbo G., Pfeiffer H. U., Janetzko K., Goebel M., Kempf V. A.. & other authors ( 2011;). Extension of platelet shelf life from 4 to 5 days by implementation of a new screening strategy in Germany. . Vox Sang 101:, 191–199. [CrossRef][PubMed]
    [Google Scholar]
  37. Walther-Wenke G., Schrezenmeier H., Deitenbeck R., Geis G., Burkhart J., Höchsmann B., Sireis W., Schmidt M., Seifried E.. & other authors ( 2010;). Screening of platelet concentrates for bacterial contamination: spectrum of bacteria detected, proportion of transfused units, and clinical follow-up. . Ann Hematol 89:, 83–91. [CrossRef][PubMed]
    [Google Scholar]
  38. Yomtovian R. A., Palavecino E. L., Dysktra A. H., Downes K. A., Morrissey A. M., Bajaksouzian S., Pokorny M. A., Lazarus H. M., Jacobs M. R.. ( 2006;). Evolution of surveillance methods for detection of bacterial contamination of platelets in a university hospital, 1991 through 2004. . Transfusion 46:, 719–730. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.071449-0
Loading
/content/journal/jmm/10.1099/jmm.0.071449-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error