1887

Abstract

Cholix toxin (ChxA) is an exotoxin reported in non-O1/non-O139. Apart from its prototype (ChxA I) we have recently identified two novel variants of this toxin, ChxA II and ChxA III. Our previous investigations indicated that the first two variants may instigate extra-intestinal infections and ChxA II can be more lethal than ChxA I in mice. However, all three cholix toxins (ChxA I to III) failed to show any enterotoxicity in rabbit ileal loops. In this study we developed a PCR-restriction fragment length polymorphism (RFLP) assay to differentiate all three variants to further understand the importance of each subtype. By using 53 non-O1/non-O139 strains harbouring genes, which were previously categorized by sequencing, and various other strains as negative controls, the PCR-RFLP assay showed 100 % typability and specificity. Furthermore, when applied to differentiate additional strains, which were also screened for the gene by colony hybridization, this assay identified I and II genes among 18.5 % and 4.5 % of non-O1/non-O139 strains ( = 178), respectively. One non-O1/non-O139 strain was untypable due to the insertion of an IS-like element. Interestingly, the I gene was detected in 10 out of 137 cholera toxin gene-negative O1 strains. These results suggest that the PCR-RFLP assay developed in this study can be a rapid and simple method to differentiate the subtypes.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.070797-0
2014-05-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/5/667.html?itemId=/content/journal/jmm/10.1099/jmm.0.070797-0&mimeType=html&fmt=ahah

References

  1. Asakura M., Samosornsuk W., Taguchi M., Kobayashi K., Misawa N., Kusumoto M., Nishimura K., Matsuhisa A., Yamasaki S.. ( 2007;). Comparative analysis of cytolethal distending toxin (cdt) genes among Campylobacter jejuni, C. coli and C. fetus strains. . Microb Pathog 42:, 174–183. [CrossRef][PubMed]
    [Google Scholar]
  2. Awasthi S. P., Asakura M., Chowdhury N., Neogi S. B., Hinenoya A., Golbar H. M., Yamate J., Arakawa E., Tada T.. & other authors ( 2013;). Novel cholix toxin variants, ADP-ribosylating toxins in Vibrio cholerae non-O1/non-O139 strains, and their pathogenicity. . Infect Immun 81:, 531–541. [CrossRef][PubMed]
    [Google Scholar]
  3. Chen Y., Johnson J. A., Pusch G. D., Morris J. G. Jr, Stine O. C.. ( 2007;). The genome of non-O1 Vibrio cholerae NRT36S demonstrates the presence of pathogenic mechanisms that are distinct from those of O1 Vibrio cholerae. . Infect Immun 75:, 2645–2647. [CrossRef][PubMed]
    [Google Scholar]
  4. Dziejman M., Serruto D., Tam V. C., Sturtevant D., Diraphat P., Faruque S. M., Rahman M. H., Heidelberg J. F., Decker J.. & other authors ( 2005;). Genomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. . Proc Natl Acad Sci U S A 102:, 3465–3470. [CrossRef][PubMed]
    [Google Scholar]
  5. Fasano A., Baudry B., Pumplin D. W., Wasserman S. S., Tall B. D., Ketley J. M., Kaper J. B.. ( 1991;). Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. . Proc Natl Acad Sci U S A 88:, 5242–5246. [CrossRef][PubMed]
    [Google Scholar]
  6. Fasano A., Fiorentini C., Donelli G., Uzzau S., Kaper J. B., Margaretten K., Ding X., Guandalini S., Comstock L., Goldblum S. E.. ( 1995;). Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization, in vitro. . J Clin Invest 96:, 710–720. [CrossRef][PubMed]
    [Google Scholar]
  7. Ghosh A., Saha D. R., Hoque K. M., Asakuna M., Yamasaki S., Koley H., Das S. S., Chakrabarti M. K., Pal A.. ( 2006;). Enterotoxigenicity of mature 45-kilodalton and processed 35-kilodalton forms of hemagglutinin protease purified from a cholera toxin gene-negative Vibrio cholerae non-O1, non-O139 strain. . Infect Immun 74:, 2937–2946. [CrossRef][PubMed]
    [Google Scholar]
  8. Hoshino K., Yamasaki S., Mukhopadhyay A. K., Chakraborty S., Basu A., Bhattacharya S. K., Nair G. B., Shimada T., Takeda Y.. ( 1998;). Development and evaluation of a multiplex PCR assay for rapid detection of toxigenic Vibrio cholerae O1 and O139. . FEMS Immunol Med Microbiol 20:, 201–207. [CrossRef][PubMed]
    [Google Scholar]
  9. Jørgensen R., Purdy A. E., Fieldhouse R. J., Kimber M. S., Bartlett D. H., Merrill A. R.. ( 2008;). Cholix toxin, a novel ADP-ribosylating factor from Vibrio cholerae. . J Biol Chem 283:, 10671–10678. [CrossRef][PubMed]
    [Google Scholar]
  10. Licznar P., Bertrand C., Canal I., Prère M. F., Fayet O.. ( 2003;). Genetic variability of the frameshift region in IS911 transposable elements from Escherichia coli clinical isolates. . FEMS Microbiol Lett 218:, 231–237. [CrossRef][PubMed]
    [Google Scholar]
  11. Lin Z., Yamasaki S., Kurazono H., Ohmura M., Karasawa T., Inoue T., Sakamoto S., Suganami T., Takeoka T.. & other authors ( 1993;). Cloning and sequencing of two new Verotoxin 2 variant genes of Escherichia coli isolated from cases of human and bovine diarrhea. . Microbiol Immunol 37:, 451–459. [CrossRef][PubMed]
    [Google Scholar]
  12. Neogi S. B., Chowdhury N., Asakura M., Hinenoya A., Haldar S., Saidi S. M., Kogure K., Lara R. J., Yamasaki S.. ( 2010;). A highly sensitive and specific multiplex PCR assay for simultaneous detection of Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus. . Lett Appl Microbiol 51:, 293–300. [CrossRef][PubMed]
    [Google Scholar]
  13. Pukatzki S., Ma A. T., Sturtevant D., Krastins B., Sarracino D., Nelson W. C., Heidelberg J. F., Mekalanos J. J.. ( 2006;). Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. . Proc Natl Acad Sci U S A 103:, 1528–1533. [CrossRef][PubMed]
    [Google Scholar]
  14. Purdy A., Rohwer F., Edwards R., Azam F., Bartlett D. H.. ( 2005;). A glimpse into the expanded genome content of Vibrio cholerae through identification of genes present in environmental strains. . J Bacteriol 187:, 2992–3001. [CrossRef][PubMed]
    [Google Scholar]
  15. Purdy A. E., Balch D., Lizárraga-Partida M. L., Islam M. S., Martinez-Urtaza J., Huq A., Colwell R. R., Bartlett D. H.. ( 2010;). Diversity and distribution of cholix toxin, a novel ADP-ribosylating factor from Vibrio cholerae. . Environ Microbiol Rep 2:, 198–207. [CrossRef][PubMed]
    [Google Scholar]
  16. Sarkar B., Bhattacharya T., Ramamurthy T., Shimada T., Takeda Y., Balakrish Nair G.. ( 2002;). Preferential association of the heat-stable enterotoxin gene (stn) with environmental strains of Vibrio cholerae belonging to the O14 serogroup. . Epidemiol Infect 129:, 245–251. [CrossRef][PubMed]
    [Google Scholar]
  17. Zaghloul L., Tang C., Chin H. Y., Bek E. J., Lan R., Tanaka M. M.. ( 2007;). The distribution of insertion sequences in the genome of Shigella flexneri strain 2457T. . FEMS Microbiol Lett 277:, 197–204. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.070797-0
Loading
/content/journal/jmm/10.1099/jmm.0.070797-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error