1887

Abstract

is one of the most dreaded opportunistic pathogens accounting for 10 % of hospital-acquired infections, with a 50 % mortality rate in chronically ill patients. The increased prevalence of drug-resistant isolates is a major cause of concern. Resistance in is mediated by various mechanisms, some of which are shared among different classes of antibiotics and which raise the possibility of cross-resistance. The goal of this study was to explore the effect of subinhibitory concentrations (SICs) of clinically relevant antibiotics and the role of a global antibiotic resistance and virulence regulator, AmpR, in developing cross-resistance. We investigated the induction of transient cross-resistance in PAO1 upon exposure to SICs of antibiotics. Pre-exposure to carbapenems, specifically imipenem, even at 3 ng ml, adversely affected the efficacy of clinically used penicillins and cephalosporins. The high β-lactam resistance was due to elevated expression of both and , encoding a chromosomal β-lactamase and its regulator, respectively. Differences in the susceptibility of and mutants suggested non-AmpC-mediated regulation of β-lactam resistance by AmpR. The increased susceptibility of in the absence of to various antibiotics upon SIC exposure suggests that AmpR plays a major role in the cross-resistance. AmpR was shown previously to be involved in resistance to quinolones by regulating MexEF–OprN efflux pump. The data here further indicate the role of AmpR in cross-resistance between quinolones and aminoglycosides. This was confirmed using quantitative PCR, where expression of the efflux pump was further induced by ciprofloxacin and tobramycin, its substrate and a non-substrate, respectively, in the absence of . The data presented here highlight the intricate cross-regulation of antibiotic resistance pathways at SICs of antibiotics and the need for careful assessment of the order of antibiotic regimens as this may have dire consequences. Targeting a global regulator such as AmpR that connects diverse pathways is a feasible therapeutic approach to combat pathogenesis.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.070185-0
2014-04-01
2020-11-30
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/4/544.html?itemId=/content/journal/jmm/10.1099/jmm.0.070185-0&mimeType=html&fmt=ahah

References

  1. Alvarez-Ortega C., Wiegand I., Olivares J., Hancock R. E., Martínez J. L. 2011; The intrinsic resistome of Pseudomonas aeruginosa to β-lactams. Virulence 2:144–146 [CrossRef][PubMed]
    [Google Scholar]
  2. Amsler K., Santoro C., Foleno B., Bush K., Flamm R. 2010; Comparison of broth microdilution, agar dilution, and Etest for susceptibility testing of doripenem against Gram-negative and Gram-positive pathogens. J Clin Microbiol 48:3353–3357 [CrossRef][PubMed]
    [Google Scholar]
  3. Andersson D. I., Hughes D. 2011; Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol Rev 35:901–911 [CrossRef][PubMed]
    [Google Scholar]
  4. Angus B. L., Carey A. M., Caron D. A., Kropinski A. M., Hancock R. E. 1982; Outer membrane permeability in Pseudomonas aeruginosa: comparison of a wild-type with an antibiotic-supersusceptible mutant. Antimicrob Agents Chemother 21:299–309 [CrossRef][PubMed]
    [Google Scholar]
  5. Arendrup M., Lundgren B., Jensen I. M., Hansen B. S., Frimodt-Møller N. 2001; Comparison of Etest and a tablet diffusion test with the NCCLS broth microdilution method for fluconazole and amphotericin B susceptibility testing of Candida isolates. J Antimicrob Chemother 47:521–526 [CrossRef][PubMed]
    [Google Scholar]
  6. Bagge N., Schuster M., Hentzer M., Ciofu O., Givskov M., Greenberg E. P., Høiby N. 2004; Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and β-lactamase and alginate production. Antimicrob Agents Chemother 48:1175–1187 [CrossRef][PubMed]
    [Google Scholar]
  7. Balasubramanian D., Kong K. F., Jayawardena S. R., Leal S. M., Sautter R. T., Mathee K. 2011; Co-regulation of β-lactam resistance, alginate production and quorum sensing in Pseudomonas aeruginosa. J Med Microbiol 60:147–156 [CrossRef][PubMed]
    [Google Scholar]
  8. Balasubramanian D., Schneper L., Merighi M., Smith R., Narasimhan G., Lory S., Mathee K. 2012; The regulatory repertoire of Pseudomonas aeruginosa AmpC β-lactamase regulator AmpR includes virulence genes. PLoS ONE 7:e34067 [CrossRef][PubMed]
    [Google Scholar]
  9. Balasubramanian D., Kumari H., Jaric M., Fernandez M., Turner K. H., Dove S. L., Narasimhan G., Lory S., Mathee K. 2013a; Deep sequencing analyses expands the Pseudomonas aeruginosa AmpR regulon to include small RNA-mediated regulation of iron acquisition, heat shock and oxidative stress response. Nucleic Acids Res [CrossRef][PubMed]
    [Google Scholar]
  10. Balasubramanian D., Schneper L., Kumari H., Mathee K. 2013b; A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 41:1–20 [CrossRef][PubMed]
    [Google Scholar]
  11. Baquero F., Negri M. C. 1997; Selective compartments for resistant microorganisms in antibiotic gradients. BioEssays 19:731–736 [CrossRef][PubMed]
    [Google Scholar]
  12. Baquero F., Martínez J. L., Cantón R. 2008; Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19:260–265 [CrossRef][PubMed]
    [Google Scholar]
  13. Barbier F., Wolff M. 2010; [Multi-drug resistant Pseudomonas aeruginosa: towards a therapeutic dead end?]. Med Sci (Paris) 26:960–968 (in French) [CrossRef][PubMed]
    [Google Scholar]
  14. Bonnin R. A., Poirel L., Nordmann P., Eikmeyer F. G., Wibberg D., Pühler A., Schlüter A. 2013; Complete sequence of broad-host-range plasmid pNOR-2000 harbouring the metallo-β-lactamase gene blaVIM-2 from Pseudomonas aeruginosa. J Antimicrob Chemother 68:1060–1065 [CrossRef][PubMed]
    [Google Scholar]
  15. Boyd N., Nailor M. D. 2011; Combination antibiotic therapy for empiric and definitive treatment of gram-negative infections: insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy 31:1073–1084 [CrossRef][PubMed]
    [Google Scholar]
  16. Bradford P. A. 2001; Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14:933–951 [CrossRef][PubMed]
    [Google Scholar]
  17. Cabot G., Ocampo-Sosa A. A., Domínguez M. A., Gago J. F., Juan C., Tubau F., Rodríguez C., Moyà B., Peña C.& other authors ( 2012; Genetic markers of widespread extensively drug-resistant Pseudomonas aeruginosa high-risk clones. Antimicrob Agents Chemother 56:6349–6357 [CrossRef][PubMed]
    [Google Scholar]
  18. Carmeli Y., Troillet N., Eliopoulos G. M., Samore M. H. 1999; Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrob Agents Chemother 43:1379–1382[PubMed]
    [Google Scholar]
  19. Castillo-Vera J., Ribas-Aparicio R. M., Nicolau C. J., Oliver A., Osorio-Carranza L., Aparicio-Ozores G. 2012; Unusual diversity of acquired β-lactamases in multidrug-resistant Pseudomonas aeruginosa isolates in a Mexican hospital. Microb Drug Resist 18:471–478 [CrossRef][PubMed]
    [Google Scholar]
  20. CLSI 2006; Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard M7-A7, 7th edn. Wayne, PA: Clinical and Laboratory Standards Institute;
  21. Curcio D. 2013; Multidrug-resistant Gram-negative bacterial infections: are you ready for the challenge?. Curr Clin Pharmacol 8:1–12[PubMed]
    [Google Scholar]
  22. Cystic Fibrosis Foundation 2011 Patient Registry Annual Data Report Bethesda: Maryland Cystic Fibrosis Foundation;
    [Google Scholar]
  23. Davies J., Spiegelman G. B., Yim G. 2006; The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 9:445–453 [CrossRef][PubMed]
    [Google Scholar]
  24. Fernández L., Breidenstein E. B., Hancock R. E. 2011; Creeping baselines and adaptive resistance to antibiotics. Drug Resist Updat 14:1–21 [CrossRef][PubMed]
    [Google Scholar]
  25. Giamarellou H., Kanellakopoulou K. 2008; Current therapies for Pseudomonas aeruginosa. Crit Care Clin 24:261–278, viii [CrossRef][PubMed]
    [Google Scholar]
  26. Girlich D., Naas T., Nordmann P. 2004; Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa. Antimicrob Agents Chemother 48:2043–2048 [CrossRef][PubMed]
    [Google Scholar]
  27. Gooderham W. J., Hancock R. E. 2009; Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. FEMS Microbiol Rev 33:279–294 [CrossRef][PubMed]
    [Google Scholar]
  28. Gupta V. 2008; Metallo β lactamases in Pseudomonas aeruginosa and Acinetobacter species. Expert Opin Investig Drugs 17:131–143 [CrossRef][PubMed]
    [Google Scholar]
  29. Hanson N. D., Sanders C. C. 1999; Regulation of inducible AmpC β-lactamase expression among Enterobacteriaceae. Curr Pharm Des 5:881–894[PubMed]
    [Google Scholar]
  30. Hennessey T. D. 1967; Inducible β-lactamase in Enterobacter. J Gen Microbiol 49:277–285 [CrossRef][PubMed]
    [Google Scholar]
  31. Jacoby G. A. 2009; AmpC β-lactamases. Clin Microbiol Rev 22:161–182 [CrossRef][PubMed]
    [Google Scholar]
  32. Johnson S. J., Ernst E. J., Moores K. G. 2011; Is double coverage of Gram-negative organisms necessary?. Am J Health Syst Pharm 68:119–124 [CrossRef][PubMed]
    [Google Scholar]
  33. Kerr K. G., Snelling A. M. 2009; Pseudomonas aeruginosa: a formidable and ever-present adversary. J Hosp Infect 73:338–344 [CrossRef][PubMed]
    [Google Scholar]
  34. Köhler T., Michéa-Hamzehpour M., Henze U., Gotoh N., Curty L. K., Pechère J.-C. 1997; Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol 23:345–354 [CrossRef][PubMed]
    [Google Scholar]
  35. Köhler T., Epp S. F., Curty L. K., Pechère J. C. 1999; Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol 181:6300–6305[PubMed]
    [Google Scholar]
  36. Kong K. F., Jayawardena S. R., Del Puerto A., Wiehlmann L., Laabs U., Tümmler B., Mathee K. 2005a; Characterization of poxB, a chromosomal-encoded Pseudomonas aeruginosa oxacillinase. Gene 358:82–92 [CrossRef][PubMed]
    [Google Scholar]
  37. Kong K. F., Jayawardena S. R., Indulkar S. D., Del Puerto A., Koh C. L., Høiby N., Mathee K. 2005b; Pseudomonas aeruginosa AmpR is a global transcriptional factor that regulates expression of AmpC and PoxB β-lactamases, proteases, quorum sensing, and other virulence factors. Antimicrob Agents Chemother 49:4567–4575 [CrossRef][PubMed]
    [Google Scholar]
  38. Li X. Z., Nikaido H., Poole K. 1995; Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother 39:1948–1953 [CrossRef][PubMed]
    [Google Scholar]
  39. Lindberg F., Normark S. 1986; Contribution of chromosomal β-lactamases to β-lactam resistance in enterobacteria. Rev Infect Dis 8:Suppl. 3S292–S304 [CrossRef][PubMed]
    [Google Scholar]
  40. Lindquist S., Lindberg F., Normark S. 1989; Binding of the Citrobacter freundii AmpR regulator to a single DNA site provides both autoregulation and activation of the inducible ampC β-lactamase gene. J Bacteriol 171:3746–3753[PubMed]
    [Google Scholar]
  41. Lister P. D., Wolter D. J., Hanson N. D. 2009; Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22:582–610 [CrossRef][PubMed]
    [Google Scholar]
  42. Livermore D. M. 1987; Clinical significance of β-lactamase induction and stable derepression in Gram-negative rods. Eur J Clin Microbiol 6:439–445 [CrossRef][PubMed]
    [Google Scholar]
  43. Livermore D. M. 2002; Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare?. Clin Infect Dis 34:634–640 [CrossRef][PubMed]
    [Google Scholar]
  44. Livermore D. M., Yang Y. J. 1987; β-Lactamase lability and inducer power of newer β-lactam antibiotics in relation to their activity against β-lactamase-inducibility mutants of Pseudomonas aeruginosa. J Infect Dis 155:775–782 [CrossRef][PubMed]
    [Google Scholar]
  45. Lodge J. M., Minchin S. D., Piddock L. J., Busby S. J. 1990; Cloning, sequencing and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chromosomal ampC β-lactamase. Biochem J 272:627–631[PubMed]
    [Google Scholar]
  46. Lodge J., Busby S., Piddock L. 1993; Investigation of the Pseudomonas aeruginosa ampR gene and its role at the chromosomal ampC β-lactamase promoter. FEMS Microbiol Lett 111:315–320[PubMed]
    [Google Scholar]
  47. Maseda H., Saito K., Nakajima A., Nakae T. 2000; Variation of the mexT gene, a regulator of the MexEF-oprN efflux pump expression in wild-type strains of Pseudomonas aeruginosa. FEMS Microbiol Lett 192:107–112 [CrossRef][PubMed]
    [Google Scholar]
  48. Masuda N., Gotoh N., Ohya S., Nishino T. 1996; Quantitative correlation between susceptibility and OprJ production in NfxB mutants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 40:909–913[PubMed]
    [Google Scholar]
  49. Masuda N., Sakagawa E., Ohya S., Gotoh N., Tsujimoto H., Nishino T. 2000; Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44:3322–3327 [CrossRef][PubMed]
    [Google Scholar]
  50. McGowan J. E. Jr 2006; Resistance in nonfermenting Gram-negative bacteria: multidrug resistance to the maximum. Am J Med 119:Suppl. 1S29–S36 discussion S62–S70 [CrossRef][PubMed]
    [Google Scholar]
  51. Morita Y., Tomida J., Kawamura Y. 2012; MexXY multidrug efflux system of Pseudomonas aeruginosa. Front Microbiol 3:408 [CrossRef][PubMed]
    [Google Scholar]
  52. Nikaido H. 2003; Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656 [CrossRef][PubMed]
    [Google Scholar]
  53. Normark S., Lindquist S., Lindberg F. 1986; Chromosomal β-lactam resistance in enterobacteria. Scand J Infect Dis Suppl 49:38–45[PubMed]
    [Google Scholar]
  54. Odds F. C. 2003; Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52:1 [CrossRef][PubMed]
    [Google Scholar]
  55. Page M. G., Heim J. 2009; Prospects for the next anti-Pseudomonas drug. Curr Opin Pharmacol 9:558–565 [CrossRef][PubMed]
    [Google Scholar]
  56. Pankuch G. A., Lin G., Hoellman D. B., Good C. E., Jacobs M. R., Appelbaum P. C. 2006; Activity of retapamulin against Streptococcus pyogenes and Staphylococcus aureus evaluated by agar dilution, microdilution, E-test, and disk diffusion methodologies. Antimicrob Agents Chemother 50:1727–1730 [CrossRef][PubMed]
    [Google Scholar]
  57. Paul M., Benuri-Silbiger I., Soares-Weiser K., Leibovici L. 2004; β Lactam monotherapy versus β lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: systematic review and meta-analysis of randomised trials. BMJ 328:668 [CrossRef][PubMed]
    [Google Scholar]
  58. Paul M., Silbiger I., Grozinsky S., Soares-Weiser K., Leibovici L. 2006; β Lactam antibiotic monotherapy versus β lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst Rev 1:CD003344[PubMed]
    [Google Scholar]
  59. Pendleton J. N., Gorman S. P., Gilmore B. F. 2013; Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 11:297–308 [CrossRef][PubMed]
    [Google Scholar]
  60. Poirel L., Bonnin R. A., Nordmann P. 2012; Genetic support and diversity of acquired extended-spectrum β-lactamases in Gram-negative rods. Infect Genet Evol 12:883–893 [CrossRef][PubMed]
    [Google Scholar]
  61. Poole K., Gotoh N., Tsujimoto H., Zhao Q., Wada A., Yamasaki T., Neshat S., Yamagishi J., Li X. Z., Nishino T. 1996a; Overexpression of the mexC-mexD-oprJ efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa. Mol Microbiol 21:713–725 [CrossRef][PubMed]
    [Google Scholar]
  62. Poole K., Tetro K., Zhao Q., Neshat S., Heinrichs D. E., Bianco N. 1996b; Expression of the multidrug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a regulator of operon expression. Antimicrob Agents Chemother 40:2021–2028[PubMed]
    [Google Scholar]
  63. Rice L. B. 2010; Progress and challenges in implementing the research on ESKAPE pathogens. Infect Control Hosp Epidemiol 31:Suppl 1S7–S10 [CrossRef][PubMed]
    [Google Scholar]
  64. Rietsch A., Vallet-Gely I., Dove S. L., Mekalanos J. J. 2005; ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 102:8006–8011 [CrossRef][PubMed]
    [Google Scholar]
  65. Sopirala M. M., Mangino J. E., Gebreyes W. A., Biller B., Bannerman T., Balada-Llasat J. M., Pancholi P. 2010; Synergy testing by Etest, microdilution checkerboard, and time-kill methods for pan-drug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 54:4678–4683 [CrossRef][PubMed]
    [Google Scholar]
  66. Stebbing A. R. 1982; Hormesis – the stimulation of growth by low levels of inhibitors. Sci Total Environ 22:213–234 [CrossRef][PubMed]
    [Google Scholar]
  67. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J.& other authors ( 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964 [CrossRef][PubMed]
    [Google Scholar]
  68. Tamma P. D., Cosgrove S. E., Maragakis L. L. 2012; Combination therapy for treatment of infections with Gram-negative bacteria. Clin Microbiol Rev 25:450–470 [CrossRef][PubMed]
    [Google Scholar]
  69. Vardakas K. Z., Tansarli G. S., Bliziotis I. A., Falagas M. E. 2013; β-Lactam plus aminoglycoside or fluoroquinolone combination versus β-lactam monotherapy for Pseudomonas aeruginosa infections: a meta-analysis. Int J Antimicrob Agents 41:301–310 [CrossRef][PubMed]
    [Google Scholar]
  70. Yeung A. T., Bains M., Hancock R. E. 2011; The sensor kinase CbrA is a global regulator that modulates metabolism, virulence, and antibiotic resistance in Pseudomonas aeruginosa. J Bacteriol 193:918–931 [CrossRef][PubMed]
    [Google Scholar]
  71. Yong D., Toleman M. A., Bell J., Ritchie B., Pratt R., Ryley H., Walsh T. R. 2012; Genetic and biochemical characterization of an acquired subgroup B3 metallo-β-lactamase gene, blaAIM-1, and its unique genetic context in Pseudomonas aeruginosa from Australia. Antimicrob Agents Chemother 56:6154–6159 [CrossRef][PubMed]
    [Google Scholar]
  72. Zavascki A. P., Carvalhaes C. G., Picão R. C., Gales A. C. 2010; Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: resistance mechanisms and implications for therapy. Expert Rev Anti Infect Ther 8:71–93 [CrossRef][PubMed]
    [Google Scholar]
  73. Zhao W. H., Hu Z. Q. 2010; β-Lactamases identified in clinical isolates of Pseudomonas aeruginosa. Crit Rev Microbiol 36:245–258 [CrossRef][PubMed]
    [Google Scholar]
  74. Zhu B., Zhang P., Huang Z., Yan H. Q., Wu A. H., Zhang G. W., Mao Q. 2013; Study on drug resistance of Pseudomonas aeruginosa plasmid-mediated AmpC β-lactamase. Mol Med Rep 7:664–668[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.070185-0
Loading
/content/journal/jmm/10.1099/jmm.0.070185-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error