1887

Abstract

Although rarely isolated from cystic fibrosis (CF) patients, is associated with accelerated lung function decline. During 18 years of epidemiological surveillance in the major Portuguese CF centre in Lisbon, only one patient was infected with . Pulmonary deterioration, associated with the evolution of forced expiratory volume in 1 s, occurred during 5.5 years of colonization with this clone (with the new sequence type ST-668). Transient co-colonization with and other bacterial and fungal pathogens occurred, but prevailed until the patient’s death. The systematic assessment of relevant phenotypes for the sequential clonal isolates examined in this retrospective study (14 of and four of ) showed that they were variants, although in general no isolation time-dependent pattern of alteration was identified. However, the first isolate retrieved was more susceptible to gentamicin, imipenem and tobramycin, and exhibited a higher swarming motility compared with most of the isolates obtained during the later stages of disease progression and antimicrobial therapy.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.069849-0
2014-04-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/4/594.html?itemId=/content/journal/jmm/10.1099/jmm.0.069849-0&mimeType=html&fmt=ahah

References

  1. Baldwin A. , Mahenthiralingam E. , Thickett K. M. , Honeybourne D. , Maiden M. C. J. , Govan J. R. , Speert D. P. , LiPuma J. J. , Vandamme P. , Dowson C. G. . ( 2005; ). Multilocus sequence typing scheme that provides both species and strain differentiation for the Burkholderia cepacia complex. . J Clin Microbiol 43:, 4665–4673. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bernhardt S. A. , Spilker T. , Coffey T. , LiPuma J. J. . ( 2003; ). Burkholderia cepacia complex in cystic fibrosis: frequency of strain replacement during chronic infection. . Clin Infect Dis 37:, 780–785. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bernier S. P. , Nguyen D. T. , Sokol P. A. . ( 2008; ). A LysR-type transcriptional regulator in Burkholderia cenocepacia influences colony morphology and virulence. . Infect Immun 76:, 38–47. [CrossRef] [PubMed]
    [Google Scholar]
  4. Biddick R. , Spilker T. , Martin A. , LiPuma J. J. . ( 2003; ). Evidence of transmission of Burkholderia cepacia, Burkholderia multivorans and Burkholderia dolosa among persons with cystic fibrosis. . FEMS Microbiol Lett 228:, 57–62. [CrossRef] [PubMed]
    [Google Scholar]
  5. Caraher E. , Reynolds G. , Murphy P. , McClean S. , Callaghan M. . ( 2007; ). Comparison of antibiotic susceptibility of Burkholderia cepacia complex organisms when grown planktonically or as biofilm in vitro. . Eur J Clin Microbiol Infect Dis 26:, 213–216. [CrossRef] [PubMed]
    [Google Scholar]
  6. Coutinho C. P. , de Carvalho C. C. C. R. , Madeira A. , Pinto-de-Oliveira A. , Sá-Correia I. . ( 2011a; ). Burkholderia cenocepacia phenotypic clonal variation during a 3.5 year colonization in the lungs of a cystic fibrosis patient. . Infect Immun 79:, 2950–2960. [CrossRef] [PubMed]
    [Google Scholar]
  7. Coutinho C. P. , Dos Santos S. C. , Madeira A. , Mira N. P. , Moreira A. S. , Sá-Correia I. . ( 2011b; ). Long-term colonization of the cystic fibrosis lung by Burkholderia cepacia complex bacteria: epidemiology, clonal variation, and genome-wide expression alterations. . Front Cell Infect Microbiol 1:, 12. [CrossRef] [PubMed]
    [Google Scholar]
  8. Cunha M. V. , Leitão J. H. , Mahenthiralingam E. , Vandamme P. , Lito L. , Barreto C. , Salgado M. J. , Sá-Correia I. . ( 2003; ). Molecular analysis of Burkholderia cepacia complex isolates from a Portuguese cystic fibrosis center: a 7-year study. . J Clin Microbiol 41:, 4113–4120. [CrossRef] [PubMed]
    [Google Scholar]
  9. Cunha M. V. , Sousa S. A. , Leitão J. H. , Moreira L. M. , Videira P. A. , Sá-Correia I. . ( 2004; ). Studies on the involvement of the exopolysaccharide produced by cystic fibrosis-associated isolates of the Burkholderia cepacia complex in biofilm formation and in persistence of respiratory infections. . J Clin Microbiol 42:, 3052–3058. [CrossRef] [PubMed]
    [Google Scholar]
  10. Cunha M. V. , Pinto-de-Oliveira A. , Meirinhos-Soares L. , Salgado M. J. , Melo-Cristino J. , Correia S. , Barreto C. , Sá-Correia I. . ( 2007; ). Exceptionally high representation of Burkholderia cepacia among B. cepacia complex isolates recovered from the major Portuguese cystic fibrosis center. . J Clin Microbiol 45:, 1628–1633. [CrossRef] [PubMed]
    [Google Scholar]
  11. Döring G. , Parameswaran I. G. , Murphy T. F. . ( 2011; ). Differential adaptation of microbial pathogens to airways of patients with cystic fibrosis and chronic obstructive pulmonary disease. . FEMS Microbiol Rev 35:, 124–146. [CrossRef] [PubMed]
    [Google Scholar]
  12. Drevinek P. , Mahenthiralingam E. . ( 2010; ). Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. . Clin Microbiol Infect 16:, 821–830. [CrossRef] [PubMed]
    [Google Scholar]
  13. Govan J. R. , Brown A. R. , Jones A. M. . ( 2007; ). Evolving epidemiology of Pseudomonas aeruginosa and the Burkholderia cepacia complex in cystic fibrosis lung infection. . Future Microbiol 2:, 153–164. [CrossRef] [PubMed]
    [Google Scholar]
  14. Harrison F. . ( 2007; ). Microbial ecology of the cystic fibrosis lung. . Microbiology 153:, 917–923. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kalish L. A. , Waltz D. A. , Dovey M. , Potter-Bynoe G. , McAdam A. J. , LiPuma J. J. , Gerard C. , Goldmann D. . ( 2006; ). Impact of Burkholderia dolosa on lung function and survival in cystic fibrosis. . Am J Respir Crit Care Med 173:, 421–425. [CrossRef] [PubMed]
    [Google Scholar]
  16. Leitão J. H. , Sousa S. A. , Cunha M. V. , Salgado M. J. , Melo-Cristino J. , Barreto M. C. , Sá-Correia I. . ( 2008; ). Variation of the antimicrobial susceptibility profiles of Burkholderia cepacia complex clonal isolates obtained from chronically infected cystic fibrosis patients: a five-year survey in the major Portuguese treatment center. . Eur J Clin Microbiol Infect Dis 27:, 1101–1111. [CrossRef] [PubMed]
    [Google Scholar]
  17. Lieberman T. D. , Michel J. B. , Aingaran M. , Potter-Bynoe G. , Roux D. , Davis M. R. Jr , Skurnik D. , Leiby N. , LiPuma J. J. . & other authors ( 2011; ). Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. . Nat Genet 43:, 1275–1280. [CrossRef] [PubMed]
    [Google Scholar]
  18. LiPuma J. J. . ( 2010; ). The changing microbial epidemiology in cystic fibrosis. . Clin Microbiol Rev 23:, 299–323. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lorenzo F. D. , Sturiale L. , Palmigiano A. , Lembo-Fazio L. , Paciello I. , Coutinho C. P. , Sá-Correia I. , Bernardini M. , Lanzetta R. . & other authors ( 2013; ). Chemistry and biology of the potent endotoxin from a Burkholderia dolosa clinical isolate from a cystic fibrosis patient. . ChemBioChem 14:, 1105–1115. [CrossRef] [PubMed]
    [Google Scholar]
  20. Madeira A. , Santos P. M. , Coutinho C. P. , Pinto-de-Oliveira A. , Sá-Correia I. . ( 2011; ). Quantitative proteomics (2-D DIGE) reveals molecular strategies employed by Burkholderia cenocepacia to adapt to the airways of cystic fibrosis patients under antimicrobial therapy. . Proteomics 11:, 1313–1328. [CrossRef] [PubMed]
    [Google Scholar]
  21. Madeira A. , dos Santos S. C. , Santos P. M. , Coutinho C. P. , Tyrrell J. , McClean S. , Callaghan M. , Sá-Correia I. . ( 2005; ). Proteomic profiling of Burkholderia cenocepacia clonal isolates with different virulence potential retrieved from a cystic fibrosis patient during chronic lung infection. . PLoS ONE 8:, e83065.[CrossRef]
    [Google Scholar]
  22. Mahenthiralingam E. , Urban T. A. , Goldberg J. B. . ( 2005; ). The multifarious, multireplicon Burkholderia cepacia complex. . Nat Rev Microbiol 3:, 144–156. [CrossRef] [PubMed]
    [Google Scholar]
  23. Mira N. P. , Madeira A. , Moreira A. S. , Coutinho C. P. , Sá-Correia I. . ( 2011; ). Genomic expression analysis reveals strategies of Burkholderia cenocepacia to adapt to cystic fibrosis patients’ airways and antimicrobial therapy. . PLoS ONE 6:, e28831. [CrossRef] [PubMed]
    [Google Scholar]
  24. O’Toole G. A. , Kolter R. . ( 1998; ). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. . Mol Microbiol 30:, 295–304. [CrossRef] [PubMed]
    [Google Scholar]
  25. Peeters C. , Zlosnik J. E. , Spilker T. , Hird T. J. , LiPuma J. J. , Vandamme P. . ( 2013; ). Burkholderia pseudomultivorans sp. nov., a novel Burkholderia cepacia complex species from human respiratory samples and the rhizosphere. . Syst Appl Microbiol 36:, 483–489.[CrossRef]
    [Google Scholar]
  26. Verstraeten N. , Braeken K. , Debkumari B. , Fauvart M. , Fransaer J. , Vermant J. , Michiels J. . ( 2008; ). Living on a surface: swarming and biofilm formation. . Trends Microbiol 16:, 496–506. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.069849-0
Loading
/content/journal/jmm/10.1099/jmm.0.069849-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error