1887

Abstract

Biofilms are commonly involved in medical device-related infections. The purpose of this study was to determine the antimicrobial and anti-biofilm activity of polyethyleneimine (PEI) and PEI-based nanoparticles (nanoPEI) against and (clinical and ATCC strains), and to evaluate their effect upon biofilm formation on polyurethane (PUR)-like catheters. MICs and minimal lethal concentrations of PEI and nanoPEI were determined according to CLSI microdilution reference protocols. For PEI, the MIC value was 195.31 mg l for all the bacteria and 48.83 mg l for the yeast strains. For nanoPEI, the MIC value was 1250 mg l for all the strains except , for which it was 2500 mg l. Biofilm formation was assessed with PUR-like catheter segments and biofilm metabolic activity was quantified by colorimetry with a tetrazolium reduction assay. Plasma membrane integrity and membrane potential were assessed by flow cytometry after staining microbial cells with a membrane-impermeable dye, propidium iodide, and a membrane-potential marker, DiBAC(3). PEI inhibited growth of all microbial species; higher concentrations of nanoPEI were needed to inhibit growth of all species. Biofilm formation in the presence of anti-bacterial PEI activity was dose-dependent (except for ) and species-related. NanoPEI at 0.5×MIC and MIC significantly reduced the metabolic activity of biofilms of and , whereas 2×MIC was required in order to inhibit biofilm metabolic activity.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.069609-0
2014-09-01
2021-03-06
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/9/1167.html?itemId=/content/journal/jmm/10.1099/jmm.0.069609-0&mimeType=html&fmt=ahah

References

  1. Beyth N., Yudovin-Farber I., Bahir R., Domb A. J., Weiss E. I. 2006; Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans.. Biomaterials 27:3995–4002 [CrossRef][PubMed]
    [Google Scholar]
  2. Beyth N., Houri-Haddad Y., Baraness-Hadar L., Yudovin-Farber I., Domb A. J., Weiss E. I. 2008; Surface antimicrobial activity and biocompatibility of incorporated polyethylenimine nanoparticles. Biomaterials 29:4157–4163 [CrossRef][PubMed]
    [Google Scholar]
  3. Beyth S., Polak D., Milgrom C., Weiss E. I., Matanis S., Beyth N. 2014; Antibacterial activity of bone cement containing quaternary ammonium polyethyleneimine nanoparticles. J Antimicrob Chemother 69:854–855 [CrossRef][PubMed]
    [Google Scholar]
  4. Bräuner T., Hülser D. F., Strasser R. J. 1984; Comparative measurements of membrane potentials with microelectrodes and voltage-sensitive dyes. Biochim Biophys Acta 771:208–216 [CrossRef][PubMed]
    [Google Scholar]
  5. Chandra J., Mukherjee P. K., Leidich S. D., Faddoul F. F., Hoyer L. L., Douglas L. J., Ghannoum M. A. 2001; Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J Dent Res 80:903–908 [CrossRef][PubMed]
    [Google Scholar]
  6. CLSI 2008; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved standard, 3rd edn, M27-A3. Wayne, PA: Clinical and Laboratory Standards Institute;
  7. CLSI 2012a; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved standard, 8th edn, M07–A9. Wayne, PA: Clinical and Laboratory Standards Institute;
  8. CLSI 2012b; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved standard, 4th Informational Supplement M27-S4. Wayne, PA: Clinical and Laboratory Standards Institute;
  9. Cobrado L., Azevedo M.-M., Silva-Dias A., Ramos J. P., Pina-Vaz C., Rodrigues A. G. 2012; Cerium, chitosan and hamamelitannin as novel biofilm inhibitors?. J Antimicrob Chemother 67:1159–1162 [CrossRef][PubMed]
    [Google Scholar]
  10. De Prijck K., De Smet N., Coenye T., Schacht E., Nelis H. J. 2010; Prevention of Candida albicans biofilm formation by covalently bound dimethylaminoethylmethacrylate and polyethylenimine. Mycopathologia 170:213–221 [CrossRef][PubMed]
    [Google Scholar]
  11. Gilbert R. E., Harden M. 2008; Effectiveness of impregnated central venous catheters for catheter related blood stream infection: a systematic review. Curr Opin Infect Dis 21:235–245 [CrossRef][PubMed]
    [Google Scholar]
  12. Helander I. M., Alakomi H. L., Latva-Kala K., Koski P. 1997; Polyethyleneimine is an effective permeabilizer of Gram-negative bacteria. Microbiology 143:3193–3199 [CrossRef][PubMed]
    [Google Scholar]
  13. Helander I. M., Latva-Kala K., Lounatmaa K. 1998; Permeabilizing action of polyethyleneimine on Salmonella typhimurium involves disruption of the outer membrane and interactions with lipopolysaccharide. Microbiology 144:385–390 [CrossRef][PubMed]
    [Google Scholar]
  14. Honraet K., Goetghebeur E., Nelis H. J. 2005; Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms. J Microbiol Methods 63:287–295 [CrossRef][PubMed]
    [Google Scholar]
  15. Kalfon P., de Vaumas C., Samba D., Boulet E., Lefrant J. Y., Eyraud D., Lherm T., Santoli F., Naija W., Riou B. 2007; Comparison of silver-impregnated with standard multi-lumen central venous catheters in critically ill patients. Crit Care Med 35:1032–1039 [CrossRef][PubMed]
    [Google Scholar]
  16. Kawabata N., Nishiguchi M. 1988; Antibacterial activity of soluble pyridinium-type polymers. Appl Environ Microbiol 54:2532–2535[PubMed]
    [Google Scholar]
  17. Khalil H., Chen T., Riffon R., Wang R., Wang Z. 2008; Synergy between polyethylenimine and different families of antibiotics against a resistant clinical isolate of Pseudomonas aeruginosa.. Antimicrob Agents Chemother 52:1635–1641 [CrossRef][PubMed]
    [Google Scholar]
  18. Lee H. J., Lee S. G., Oh E. J., Chung H. Y., Han S. I., Kim E. J., Seo S. Y., Ghim H. D., Yeum J. H., Choi J. H. 2011; Antimicrobial polyethyleneimine-silver nanoparticles in a stable colloidal dispersion. Colloids Surf B Biointerfaces 88:505–511 [CrossRef][PubMed]
    [Google Scholar]
  19. Mah T. F. C., O’Toole G. A. O. 2001; Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39 [CrossRef][PubMed]
    [Google Scholar]
  20. Mermel L. A., Farr B. M., Sherertz R. J., Raad I. I., O’Grady N., Harris J. S., Craven D. E. 2001; Guidelines for the management of intravascular catheter-related infections. Clin Infect Dis 32:1249–1272 [CrossRef][PubMed]
    [Google Scholar]
  21. Oda T., Hamasaki J., Kanda N., Mikami K. 1997; Anaphylactic shock induced by an antiseptic-coated central venous catheter. Anesthesiology 87:1242–1244 [CrossRef][PubMed]
    [Google Scholar]
  22. Orsi G. B., Di Stefano L., Noah N. 2002; Hospital-acquired, laboratory-confirmed bloodstream infection: increased hospital stay and direct costs. Infect Control Hosp Epidemiol 23:190–197 [CrossRef][PubMed]
    [Google Scholar]
  23. Polderman K. H., Girbes A. R. 2002; Central venous catheter use. . Intensive Care Med 28:18–28 [CrossRef][PubMed]
    [Google Scholar]
  24. Raad I., Hanna H., Maki D. 2007; Intravascular catheter-related infections: advances in diagnosis, prevention, and management. Lancet Infect Dis 7:645–657 [CrossRef][PubMed]
    [Google Scholar]
  25. Randolph A. G., Brun-Buisson C., Goldmann D. 2005; Identification of central venous catheter-related infections in infants and children. Pediatr Crit Care Med 6:Suppl.S19–S24 [CrossRef][PubMed]
    [Google Scholar]
  26. Rupp M. E. 2014; Clinical characteristics of infections in humans due to Staphylococcus epidermidis. Methods Mol Biol 1106:1–16 [CrossRef][PubMed]
    [Google Scholar]
  27. Salt D. E., Hay S., Thomas O. R. T., Hoare M., Dunnill P. 1995; Selective flocculation of cellular contaminants from soluble proteins using polyethyleneimine: a study of several organisms and polymer molecular weights. Enzyme Microb Technol 17:107–113 [CrossRef]
    [Google Scholar]
  28. Sitges-Serra A., Girvent M. 1999; Catheter-related bloodstream infections. World J Surg 23:589–595 [CrossRef][PubMed]
    [Google Scholar]
  29. Tamura N. K., Negri M. F., Bonassoli L. A., Svidzinski T. I. 2007; [Virulence factors for Candida spp. recovered from intravascular catheters and hospital workers’ hands]. Rev Soc Bras Med Trop 40:91–93 (in Portuguese) [CrossRef][PubMed]
    [Google Scholar]
  30. Weber N. D., Merkel O. M., Kissel T., Muñoz-Fernández M. A. 2012; PEGylated poly(ethylene imine) copolymer-delivered siRNA inhibits HIV replication in vitro. J Control Release 157:55–63 [CrossRef][PubMed]
    [Google Scholar]
  31. Yudovin-Farber I., Beyth N., Nyska A., Weiss E. I., Golenser J., Domb A. J. 2008; Surface characterization and biocompatibility of restorative resin containing nanoparticles. Biomacromolecules 9:3044–3050 [CrossRef][PubMed]
    [Google Scholar]
  32. Yudovin-Farber I., Golenser J., Beyth N., Weiss E. I., Domb A. J. 2010; Quaternary ammonium polyethyleneimine: antibacterial activity. J Nanomater 2010:826343 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.069609-0
Loading
/content/journal/jmm/10.1099/jmm.0.069609-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error