1887

Abstract

Biofilms are commonly involved in medical device-related infections. The purpose of this study was to determine the antimicrobial and anti-biofilm activity of polyethyleneimine (PEI) and PEI-based nanoparticles (nanoPEI) against and (clinical and ATCC strains), and to evaluate their effect upon biofilm formation on polyurethane (PUR)-like catheters. MICs and minimal lethal concentrations of PEI and nanoPEI were determined according to CLSI microdilution reference protocols. For PEI, the MIC value was 195.31 mg l for all the bacteria and 48.83 mg l for the yeast strains. For nanoPEI, the MIC value was 1250 mg l for all the strains except , for which it was 2500 mg l. Biofilm formation was assessed with PUR-like catheter segments and biofilm metabolic activity was quantified by colorimetry with a tetrazolium reduction assay. Plasma membrane integrity and membrane potential were assessed by flow cytometry after staining microbial cells with a membrane-impermeable dye, propidium iodide, and a membrane-potential marker, DiBAC(3). PEI inhibited growth of all microbial species; higher concentrations of nanoPEI were needed to inhibit growth of all species. Biofilm formation in the presence of anti-bacterial PEI activity was dose-dependent (except for ) and species-related. NanoPEI at 0.5×MIC and MIC significantly reduced the metabolic activity of biofilms of and , whereas 2×MIC was required in order to inhibit biofilm metabolic activity.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.069609-0
2014-09-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/9/1167.html?itemId=/content/journal/jmm/10.1099/jmm.0.069609-0&mimeType=html&fmt=ahah

References

  1. Beyth N., Yudovin-Farber I., Bahir R., Domb A. J., Weiss E. I.. ( 2006;). Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans.. Biomaterials 27:, 3995–4002. [CrossRef][PubMed]
    [Google Scholar]
  2. Beyth N., Houri-Haddad Y., Baraness-Hadar L., Yudovin-Farber I., Domb A. J., Weiss E. I.. ( 2008;). Surface antimicrobial activity and biocompatibility of incorporated polyethylenimine nanoparticles. . Biomaterials 29:, 4157–4163. [CrossRef][PubMed]
    [Google Scholar]
  3. Beyth S., Polak D., Milgrom C., Weiss E. I., Matanis S., Beyth N.. ( 2014;). Antibacterial activity of bone cement containing quaternary ammonium polyethyleneimine nanoparticles. . J Antimicrob Chemother 69:, 854–855. [CrossRef][PubMed]
    [Google Scholar]
  4. Bräuner T., Hülser D. F., Strasser R. J.. ( 1984;). Comparative measurements of membrane potentials with microelectrodes and voltage-sensitive dyes. . Biochim Biophys Acta 771:, 208–216. [CrossRef][PubMed]
    [Google Scholar]
  5. Chandra J., Mukherjee P. K., Leidich S. D., Faddoul F. F., Hoyer L. L., Douglas L. J., Ghannoum M. A.. ( 2001;). Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. . J Dent Res 80:, 903–908. [CrossRef][PubMed]
    [Google Scholar]
  6. CLSI ( 2008;). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved standard, 3rd edn, M27-A3. . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  7. CLSI ( 2012a;). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved standard, 8th edn, M07–A9. . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  8. CLSI ( 2012b;). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved standard, 4th Informational Supplement M27-S4. , Wayne, PA:: Clinical and Laboratory Standards Institute;.
  9. Cobrado L., Azevedo M.-M., Silva-Dias A., Ramos J. P., Pina-Vaz C., Rodrigues A. G.. ( 2012;). Cerium, chitosan and hamamelitannin as novel biofilm inhibitors?. J Antimicrob Chemother 67:, 1159–1162. [CrossRef][PubMed]
    [Google Scholar]
  10. De Prijck K., De Smet N., Coenye T., Schacht E., Nelis H. J.. ( 2010;). Prevention of Candida albicans biofilm formation by covalently bound dimethylaminoethylmethacrylate and polyethylenimine. . Mycopathologia 170:, 213–221. [CrossRef][PubMed]
    [Google Scholar]
  11. Gilbert R. E., Harden M.. ( 2008;). Effectiveness of impregnated central venous catheters for catheter related blood stream infection: a systematic review. . Curr Opin Infect Dis 21:, 235–245. [CrossRef][PubMed]
    [Google Scholar]
  12. Helander I. M., Alakomi H. L., Latva-Kala K., Koski P.. ( 1997;). Polyethyleneimine is an effective permeabilizer of Gram-negative bacteria. . Microbiology 143:, 3193–3199. [CrossRef][PubMed]
    [Google Scholar]
  13. Helander I. M., Latva-Kala K., Lounatmaa K.. ( 1998;). Permeabilizing action of polyethyleneimine on Salmonella typhimurium involves disruption of the outer membrane and interactions with lipopolysaccharide. . Microbiology 144:, 385–390. [CrossRef][PubMed]
    [Google Scholar]
  14. Honraet K., Goetghebeur E., Nelis H. J.. ( 2005;). Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms. . J Microbiol Methods 63:, 287–295. [CrossRef][PubMed]
    [Google Scholar]
  15. Kalfon P., de Vaumas C., Samba D., Boulet E., Lefrant J. Y., Eyraud D., Lherm T., Santoli F., Naija W., Riou B.. ( 2007;). Comparison of silver-impregnated with standard multi-lumen central venous catheters in critically ill patients. . Crit Care Med 35:, 1032–1039. [CrossRef][PubMed]
    [Google Scholar]
  16. Kawabata N., Nishiguchi M.. ( 1988;). Antibacterial activity of soluble pyridinium-type polymers. . Appl Environ Microbiol 54:, 2532–2535.[PubMed]
    [Google Scholar]
  17. Khalil H., Chen T., Riffon R., Wang R., Wang Z.. ( 2008;). Synergy between polyethylenimine and different families of antibiotics against a resistant clinical isolate of Pseudomonas aeruginosa.. Antimicrob Agents Chemother 52:, 1635–1641. [CrossRef][PubMed]
    [Google Scholar]
  18. Lee H. J., Lee S. G., Oh E. J., Chung H. Y., Han S. I., Kim E. J., Seo S. Y., Ghim H. D., Yeum J. H., Choi J. H.. ( 2011;). Antimicrobial polyethyleneimine-silver nanoparticles in a stable colloidal dispersion. . Colloids Surf B Biointerfaces 88:, 505–511. [CrossRef][PubMed]
    [Google Scholar]
  19. Mah T. F. C., O’Toole G. A. O.. ( 2001;). Mechanisms of biofilm resistance to antimicrobial agents. . Trends Microbiol 9:, 34–39. [CrossRef][PubMed]
    [Google Scholar]
  20. Mermel L. A., Farr B. M., Sherertz R. J., Raad I. I., O’Grady N., Harris J. S., Craven D. E.. ( 2001;). Guidelines for the management of intravascular catheter-related infections. . Clin Infect Dis 32:, 1249–1272. [CrossRef][PubMed]
    [Google Scholar]
  21. Oda T., Hamasaki J., Kanda N., Mikami K.. ( 1997;). Anaphylactic shock induced by an antiseptic-coated central venous catheter. . Anesthesiology 87:, 1242–1244. [CrossRef][PubMed]
    [Google Scholar]
  22. Orsi G. B., Di Stefano L., Noah N.. ( 2002;). Hospital-acquired, laboratory-confirmed bloodstream infection: increased hospital stay and direct costs. . Infect Control Hosp Epidemiol 23:, 190–197. [CrossRef][PubMed]
    [Google Scholar]
  23. Polderman K. H., Girbes A. R.. ( 2002;). Central venous catheter use. . Intensive Care Med 28:, 18–28. [CrossRef][PubMed]
    [Google Scholar]
  24. Raad I., Hanna H., Maki D.. ( 2007;). Intravascular catheter-related infections: advances in diagnosis, prevention, and management. . Lancet Infect Dis 7:, 645–657. [CrossRef][PubMed]
    [Google Scholar]
  25. Randolph A. G., Brun-Buisson C., Goldmann D.. ( 2005;). Identification of central venous catheter-related infections in infants and children. . Pediatr Crit Care Med 6: (Suppl.), S19–S24. [CrossRef][PubMed]
    [Google Scholar]
  26. Rupp M. E.. ( 2014;). Clinical characteristics of infections in humans due to Staphylococcus epidermidis. . Methods Mol Biol 1106:, 1–16. [CrossRef][PubMed]
    [Google Scholar]
  27. Salt D. E., Hay S., Thomas O. R. T., Hoare M., Dunnill P.. ( 1995;). Selective flocculation of cellular contaminants from soluble proteins using polyethyleneimine: a study of several organisms and polymer molecular weights. . Enzyme Microb Technol 17:, 107–113. [CrossRef]
    [Google Scholar]
  28. Sitges-Serra A., Girvent M.. ( 1999;). Catheter-related bloodstream infections. . World J Surg 23:, 589–595. [CrossRef][PubMed]
    [Google Scholar]
  29. Tamura N. K., Negri M. F., Bonassoli L. A., Svidzinski T. I.. ( 2007;). [Virulence factors for Candida spp. recovered from intravascular catheters and hospital workers’ hands]. . Rev Soc Bras Med Trop 40:, 91–93 (in Portuguese). [CrossRef][PubMed]
    [Google Scholar]
  30. Weber N. D., Merkel O. M., Kissel T., Muñoz-Fernández M. A.. ( 2012;). PEGylated poly(ethylene imine) copolymer-delivered siRNA inhibits HIV replication in vitro. . J Control Release 157:, 55–63. [CrossRef][PubMed]
    [Google Scholar]
  31. Yudovin-Farber I., Beyth N., Nyska A., Weiss E. I., Golenser J., Domb A. J.. ( 2008;). Surface characterization and biocompatibility of restorative resin containing nanoparticles. . Biomacromolecules 9:, 3044–3050. [CrossRef][PubMed]
    [Google Scholar]
  32. Yudovin-Farber I., Golenser J., Beyth N., Weiss E. I., Domb A. J.. ( 2010;). Quaternary ammonium polyethyleneimine: antibacterial activity. . J Nanomater 2010:, 826343. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.069609-0
Loading
/content/journal/jmm/10.1099/jmm.0.069609-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error