1887

Abstract

is a globally distributed zoonotic disease affecting animals and humans, and current antibiotic and vaccine strategies are not optimal. The surface-exposed protein Omp25 is involved in virulence and plays an important role in pathogenesis during infection, suggesting that Omp25 could be a useful target for selecting potential therapeutic molecules to inhibit pathogenesis. In this study, we identified, we believe for the first time, peptides that bind specifically to the Omp25 protein of pathogens, using a phage panning technique, After four rounds of panning, 42 plaques of eluted phages were subjected to pyrosequencing. Four phage clones that bound better than the other clones were selected following confirmation by ELISA and affinity constant determination. The peptides selected could significantly inhibit 2308 (S2308) internalization and intracellular growth in RAW264.7 macrophages, and significantly induce secretion of TNF-α and IL-12 in peptide- and S2308-treated cells. Any observed peptide (OP11, OP27, OP35 or OP40) could significantly inhibit S2308 infection in BALB/c mice. Moreover, the peptide OP11 was the best candidate peptide for inhibiting S2308 infection and . These results suggest that peptide OP11 has potential for exploitation as a peptide drug in resisting S2308 infection.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.069559-0
2014-06-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/6/780.html?itemId=/content/journal/jmm/10.1099/jmm.0.069559-0&mimeType=html&fmt=ahah

References

  1. Azzazy H. M., Highsmith W. E. Jr. ( 2002;). Phage display technology: clinical applications and recent innovations. . Clin Biochem 35:, 425–445. [CrossRef][PubMed]
    [Google Scholar]
  2. Bair C. L., Oppenheim A., Trostel A., Prag G., Adhya S.. ( 2008;). A phage display system designed to detect and study protein-protein interactions. . Mol Microbiol 67:, 719–728. [CrossRef][PubMed]
    [Google Scholar]
  3. Beatty J. D., Beatty B. G., Vlahos W. G.. ( 1987;). Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay. . J Immunol Methods 100:, 173–179. [CrossRef][PubMed]
    [Google Scholar]
  4. Biron C. A., Gazzinelli R. T.. ( 1995;). Effects of IL-12 on immune responses to microbial infections: a key mediator in regulating disease outcome. . Curr Opin Immunol 7:, 485–496. [CrossRef][PubMed]
    [Google Scholar]
  5. Chatterjee D., Roberts A. D., Lowell K., Brennan P. J., Orme I. M.. ( 1992;). Structural basis of capacity of lipoarabinomannan to induce secretion of tumor necrosis factor. . Infect Immun 60:, 1249–1253.[PubMed]
    [Google Scholar]
  6. Cloeckaert A., Verger J. M., Grayon M., Grépinet O.. ( 1995;). Restriction site polymorphism of the genes encoding the major 25 kDa and 36 kDa outer-membrane proteins of Brucella. . Microbiology 141:, 2111–2121. [CrossRef][PubMed]
    [Google Scholar]
  7. Cloeckaert A., Verger J. M., Grayon M., Vizcaíno N.. ( 1996;). Molecular and immunological characterization of the major outer membrane proteins of Brucella. . FEMS Microbiol Lett 145:, 1–8. [CrossRef][PubMed]
    [Google Scholar]
  8. Cwirla S. E., Peters E. A., Barrett R. W., Dower W. J.. ( 1990;). Peptides on phage: a vast library of peptides for identifying ligands. . Proc Natl Acad Sci U S A 87:, 6378–6382. [CrossRef][PubMed]
    [Google Scholar]
  9. Das B., Meirovitch H.. ( 2001;). Optimization of solvation models for predicting the structure of surface loops in proteins. . Proteins 43:, 303–314. [CrossRef][PubMed]
    [Google Scholar]
  10. Devlin J. J., Panganiban L. C., Devlin P. E.. ( 1990;). Random peptide libraries: a source of specific protein binding molecules. . Science 249:, 404–406. [CrossRef][PubMed]
    [Google Scholar]
  11. Du B., Qian M., Zhou Z., Wang P., Wang L., Zhang X., Wu M., Zhang P., Mei B.. ( 2006;). In vitro panning of a targeting peptide to hepatocarcinoma from a phage display peptide library. . Biochem Biophys Res Commun 342:, 956–962. [CrossRef][PubMed]
    [Google Scholar]
  12. Dubray G., Bézard G.. ( 1980;). Isolation of three Brucella abortus cell-wall antigens protective in murine experimental brucellosis. . Ann Rech Vet 11:, 367–373.[PubMed]
    [Google Scholar]
  13. Edmonds M. D., Cloeckaert A., Booth N. J., Fulton W. T., Hagius S. D., Walker J. V., Elzer P. H.. ( 2001;). Attenuation of a Brucella abortus mutant lacking a major 25 kDa outer membrane protein in cattle. . Am J Vet Res 62:, 1461–1466. [CrossRef][PubMed]
    [Google Scholar]
  14. Edmonds M. D., Cloeckaert A., Elzer P. H.. ( 2002a;). Brucella species lacking the major outer membrane protein Omp25 are attenuated in mice and protect against Brucella melitensis and Brucella ovis. . Vet Microbiol 88:, 205–221. [CrossRef][PubMed]
    [Google Scholar]
  15. Edmonds M. D., Cloeckaert A., Hagius S. D., Samartino L. E., Fulton W. T., Walker J. V., Enright F. M., Booth N. J., Elzer P. H.. ( 2002b;). Pathogenicity and protective activity in pregnant goats of a Brucella melitensis Δomp25 deletion mutant. . Res Vet Sci 72:, 235–239. [CrossRef][PubMed]
    [Google Scholar]
  16. Elzer P. H., Hagius S. D., Davis D. S., DelVecchio V. G., Enright F. M.. ( 2002;). Characterization of the caprine model for ruminant brucellosis. . Vet Microbiol 90:, 425–431. [CrossRef][PubMed]
    [Google Scholar]
  17. Fjell C. D., Hiss J. A., Hancock R. E., Schneider G.. ( 2012;). Designing antimicrobial peptides: form follows function. . Nat Rev Drug Discov 11:, 37–51.[PubMed]
    [Google Scholar]
  18. Godfroid J., Cloeckaert A., Liautard J. P., Kohler S., Fretin D., Walravens K., Garin-Bastuji B., Letesson J. J.. ( 2005;). From the discovery of the Malta fever’s agent to the discovery of a marine mammal reservoir, brucellosis has continuously been a re-emerging zoonosis. . Vet Res 36:, 313–326. [CrossRef][PubMed]
    [Google Scholar]
  19. Hamdy M. E., El-Gibaly S. M., Montasser A. M.. ( 2002;). Comparison between immune responses and resistance induced in BALB/c mice vaccinated with RB51 and Rev. 1 vaccines and challenged with Brucella melitensis bv. 3. . Vet Microbiol 88:, 85–94. [CrossRef][PubMed]
    [Google Scholar]
  20. Huang J. X., Bishop-Hurley S. L., Cooper M. A.. ( 2012;). Development of anti-infectives using phage display: biological agents against bacteria, viruses, and parasites. . Antimicrob Agents Chemother 56:, 4569–4582. [CrossRef][PubMed]
    [Google Scholar]
  21. Jubier-Maurin V., Boigegrain R. A., Cloeckaert A., Gross A., Alvarez-Martinez M. T., Terraza A., Liautard J., Köhler S., Rouot B.. & other authors ( 2001;). Major outer membrane protein Omp25 of Brucella suis is involved in inhibition of tumor necrosis factor alpha production during infection of human macrophages. . Infect Immun 69:, 4823–4830. [CrossRef][PubMed]
    [Google Scholar]
  22. Luo H. B., Zheng S. G., Zhu P., Fu N.. ( 2004;). [Study on mimotopes of E. coli lipopolysaccharide 2630]. . Xibao Yu Fenzi Mianyixue Zazhi 20:, 682–685 (in Chinese).[PubMed]
    [Google Scholar]
  23. Manetti R., Parronchi P., Giudizi M. G., Piccinni M. P., Maggi E., Trinchieri G., Romagnani S.. ( 1993;). Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. . J Exp Med 177:, 1199–1204. [CrossRef][PubMed]
    [Google Scholar]
  24. Maraganore J. M., Bourdon P., Jablonski J., Ramachandran K. L., Fenton J. W. II. ( 1990;). Design and characterization of hirulogs: a novel class of bivalent peptide inhibitors of thrombin. . Biochemistry 29:, 7095–7101. [CrossRef][PubMed]
    [Google Scholar]
  25. Nelson A. L., Dhimolea E., Reichert J. M.. ( 2010;). Development trends for human monoclonal antibody therapeutics. . Nat Rev Drug Discov 9:, 767–774. [CrossRef][PubMed]
    [Google Scholar]
  26. Pande J., Szewczyk M. M., Grover A. K.. ( 2010;). Phage display: concept, innovations, applications and future. . Biotechnol Adv 28:, 849–858. [CrossRef][PubMed]
    [Google Scholar]
  27. Priestle J. P., Rahuel J., Rink H., Tones M., Grütter M. G.. ( 1993;). Changes in interactions in complexes of hirudin derivatives and human α-thrombin due to different crystal forms. . Protein Sci 2:, 1630–1642. [CrossRef][PubMed]
    [Google Scholar]
  28. Rasko D. A., Sperandio V.. ( 2010;). Anti-virulence strategies to combat bacteria-mediated disease. . Nat Rev Drug Discov 9:, 117–128. [CrossRef][PubMed]
    [Google Scholar]
  29. Scott J. K., Smith G. P.. ( 1990;). Searching for peptide ligands with an epitope library. . Science 249:, 386–390. [CrossRef][PubMed]
    [Google Scholar]
  30. Sharma A., Saha A., Bhattacharjee S., Majumdar S., Das Gupta S. K.. ( 2006;). Specific and randomly derived immunoactive peptide mimotopes of mycobacterial antigens. . Clin Vaccine Immunol 13:, 1143–1154. [CrossRef][PubMed]
    [Google Scholar]
  31. Smith G. P.. ( 1985;). Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. . Science 228:, 1315–1317. [CrossRef][PubMed]
    [Google Scholar]
  32. Verstreate D. R., Creasy M. T., Caveney N. T., Baldwin C. L., Blab M. W., Winter A. J.. ( 1982;). Outer membrane proteins of Brucella abortus: isolation and characterization. . Infect Immun 35:, 979–989.[PubMed]
    [Google Scholar]
  33. Vizcaíno N., Cloeckaert A., Zygmunt M. S., Dubray G.. ( 1996;). Cloning, nucleotide sequence, and expression of the Brucella melitensis omp31 gene coding for an immunogenic major outer membrane protein. . Infect Immun 64:, 3744–3751.[PubMed]
    [Google Scholar]
  34. Wu H. Y., Zhang X. L., Pan Q., Wu J.. ( 2005;). Functional selection of a type IV pili-binding peptide that specifically inhibits Salmonella Typhi adhesion to/invasion of human monocytic cells. . Peptides 26:, 2057–2063. [CrossRef][PubMed]
    [Google Scholar]
  35. Yang G., Cheng H., Liu C., Xue Y., Gao Y., Liu N., Gao B., Wang D., Li S.. & other authors ( 2003;). Inhibition of Staphylococcus aureus pathogenesis in vitro and in vivo by RAP-binding peptides. . Peptides 24:, 1823–1828. [CrossRef][PubMed]
    [Google Scholar]
  36. Yi G., Qian J., Wang Z., Qi Y.. ( 2003;). A phage-displayed peptide can inhibit infection by white spot syndrome virus of shrimp. . J Gen Virol 84:, 2545–2553. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.069559-0
Loading
/content/journal/jmm/10.1099/jmm.0.069559-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error