1887

Abstract

A growing number of β-lactamases have been reported in clinical isolates. The aim of this study was to investigate the diversity of β-lactamases in the collection of 51 ceftazidime-resistant clinical isolates in four hospitals of southern China. Among these isolates, variable degrees of resistance to other β-lactam and non-β-lactam agents were observed. Pulsed-field gel electrophoresis (PFGE) revealed a high degree of clonality with five main genotypes. Of the 51 isolates tested, 35 (68.6 %) were identified as extended-spectrum β-lactamase (ESBL) producers, with 35 producing PER-1, 1 CTX-M-3, 7 CTX-M-15 and 1 CTX-M-14. Most (82.9 %, 29/35) PER-1-producing isolates were collected from two hospitals between January and April in 2008 and belonged to the same PFGE pattern (pattern B) with similar antibiogram and β-lactamase profiles, which suggested an outbreak of this clone at the time. The prevalence of CTX-M-type ESBL (17.6 %, 9/51) was unexpectedly high. One isolate was identified as producing VIM-2. Furthermore, we also reported an occurrence of a novel OXA-10 variant, OXA-246, in 14 isolates. In addition, AmpC overproduction was found to be the β-lactamase-mediated mechanism responsible for ceftazidime resistance in 6 isolates (11.8 %). Our results revealed an overall diversity of β-lactamases and outbreak of a PER-1-producing clone among ceftazidime-resistant in southern China.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.069427-0
2014-03-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/3/386.html?itemId=/content/journal/jmm/10.1099/jmm.0.069427-0&mimeType=html&fmt=ahah

References

  1. Akinci E., Vahaboglu H.. ( 2010;). Minor extended-spectrum β-lactamases. . Expert Rev Anti Infect Ther 8:, 1251–1258. [CrossRef][PubMed]
    [Google Scholar]
  2. Al-Agamy M. H., Shibl A. M., Tawfik A. F., Elkhizzi N. A., Livermore D. M.. ( 2012;). Extended-spectrum and metallo-beta-lactamases among ceftazidime-resistant Pseudomonas aeruginosa in Riyadh, Saudi Arabia. . J Chemother 24:, 97–100. [CrossRef][PubMed]
    [Google Scholar]
  3. al Naiemi N., Duim B., Bart A.. ( 2006;). A CTX-M extended-spectrum β-lactamase in Pseudomonas aeruginosa and Stenotrophomonas maltophilia.. J Med Microbiol 55:, 1607–1608. [CrossRef][PubMed]
    [Google Scholar]
  4. Bert F., Branger C., Lambert-Zechovsky N.. ( 2002;). Identification of PSE and OXA β-lactamase genes in Pseudomonas aeruginosa using PCR-restriction fragment length polymorphism. . J Antimicrob Chemother 50:, 11–18. [CrossRef][PubMed]
    [Google Scholar]
  5. Bou G., Cartelle M., Tomas M., Canle D., Molina F., Moure R., Eiros J. M., Guerrero A.. ( 2002;). Identification and broad dissemination of the CTX-M-14 β-lactamase in different Escherichia coli strains in the northwest area of Spain. . J Clin Microbiol 40:, 4030–4036. [CrossRef][PubMed]
    [Google Scholar]
  6. Brasme L., Nordmann P., Fidel F., Lartigue M. F., Bajolet O., Poirel L., Forte D., Vernet-Garnier V., Madoux J.. & other authors ( 2007;). Incidence of class A extended-spectrum beta-lactamases in Champagne-Ardenne (France): a 1 year prospective study. . J Antimicrob Chemother 60:, 956–964. [CrossRef][PubMed]
    [Google Scholar]
  7. Celenza G., Pellegrini C., Caccamo M., Segatore B., Amicosante G., Perilli M.. ( 2006;). Spread of blaCTX-M-type and blaPER-2 β-lactamase genes in clinical isolates from Bolivian hospitals. . J Antimicrob Chemother 57:, 975–978. [CrossRef][PubMed]
    [Google Scholar]
  8. CLSI ( 2012;). Performance Standards for Antimicrobial Susceptibility Testing; 22nd Informational Supplement M100-S22. . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  9. Dallenne C., Da Costa A., Decré D., Favier C., Arlet G.. ( 2010;). Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae.. J Antimicrob Chemother 65:, 490–495. [CrossRef][PubMed]
    [Google Scholar]
  10. Danel F., Hall L. M., Gur D., Akalin H. E., Livermore D. M.. ( 1995;). Transferable production of PER-1 β-lactamase in Pseudomonas aeruginosa.. J Antimicrob Chemother 35:, 281–294. [CrossRef][PubMed]
    [Google Scholar]
  11. De Champs C., Poirel L., Bonnet R., Sirot D., Chanal C., Sirot J., Nordmann P.. ( 2002;). Prospective survey of β-lactamases produced by ceftazidime-resistant Pseudomonas aeruginosa isolated in a French hospital in 2000. . Antimicrob Agents Chemother 46:, 3031–3034. [CrossRef][PubMed]
    [Google Scholar]
  12. Dong F., Xu X. W., Song W. Q., P., Yu S. J., Yang Y. H., Shen X. Z.. ( 2008;). Characterization of multidrug-resistant and metallo-beta-lactamase-producing Pseudomonas aeruginosa isolates from a paediatric clinic in China. . Chin Med J (Engl) 121:, 1611–1616.[PubMed]
    [Google Scholar]
  13. Dumas J.-L., van Delden C., Perron K., Köhler T.. ( 2006;). Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR. . FEMS Microbiol Lett 254:, 217–225. [CrossRef][PubMed]
    [Google Scholar]
  14. Ellington M. J., Kistler J., Livermore D. M., Woodford N.. ( 2007;). Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. . J Antimicrob Chemother 59:, 321–322. [CrossRef][PubMed]
    [Google Scholar]
  15. Empel J., Filczak K., Mrówka A., Hryniewicz W., Livermore D. M., Gniadkowski M.. ( 2007;). Outbreak of Pseudomonas aeruginosa infections with PER-1 extended-spectrum β-lactamase in Warsaw, Poland: further evidence for an international clonal complex. . J Clin Microbiol 45:, 2829–2834. [CrossRef][PubMed]
    [Google Scholar]
  16. Fournier D., Hocquet D., Dehecq B., Cholley P., Plésiat P.. ( 2010;). Detection of a new extended-spectrum oxacillinase in Pseudomonas aeruginosa. . J Antimicrob Chemother 65:, 364–365. [CrossRef][PubMed]
    [Google Scholar]
  17. Gupta V.. ( 2008;). Metallo beta lactamases in Pseudomonas aeruginosa and Acinetobacter species. . Expert Opin Investig Drugs 17:, 131–143. [CrossRef][PubMed]
    [Google Scholar]
  18. Hou T. W., Yin X. L., Jiang C. Y., Wang Z. H., Chen Q. K., Chen X., Li W., Bai Y.. ( 2007;). [Microbiology and clinical analysis of six cases of hospital-acquired pneumonia caused by Acinetobacter baumannii.]. Zhonghua Jie He He Hu Xi Za Zhi 30:, 35–39.[PubMed]
    [Google Scholar]
  19. Jeong S. H., Bae I. K., Kwon S. B., Lee K., Yong D., Woo G. J., Lee J. H., Jung H. I., Jang S. J.. & other authors ( 2005;). Investigation of a nosocomial outbreak of Acinetobacter baumannii producing PER-1 extended-spectrum β-lactamase in an intensive care unit. . J Hosp Infect 59:, 242–248. [CrossRef][PubMed]
    [Google Scholar]
  20. Kouda S., Ohara M., Onodera M., Fujiue Y., Sasaki M., Kohara T., Kashiyama S., Hayashida S., Harino T.. & other authors ( 2009;). Increased prevalence and clonal dissemination of multidrug-resistant Pseudomonas aeruginosa with the blaIMP-1 gene cassette in Hiroshima. . J Antimicrob Chemother 64:, 46–51. [CrossRef][PubMed]
    [Google Scholar]
  21. Lee K., Park A. J., Kim M. Y., Lee H. J., Cho J. H., Kang J. O., Yong D., Chong Y..KONSAR group ( 2009;). Metallo-β-lactamase-producing Pseudomonas spp. in Korea: high prevalence of isolates with VIM-2 type and emergence of isolates with IMP-1 type. . Yonsei Med J 50:, 335–339. [CrossRef][PubMed]
    [Google Scholar]
  22. Lister P. D., Wolter D. J., Hanson N. D.. ( 2009;). Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. . Clin Microbiol Rev 22:, 582–610. [CrossRef][PubMed]
    [Google Scholar]
  23. Livermore D. M.. ( 2002;). Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare?. Clin Infect Dis 34:, 634–640. [CrossRef][PubMed]
    [Google Scholar]
  24. Mugnier P., Podglajen I., Goldstein F. W., Collatz E.. ( 1998;). Carbapenems as inhibitors of OXA-13, a novel, integron-encoded β-lactamase in Pseudomonas aeruginosa.. Microbiology 144:, 1021–1031. [CrossRef][PubMed]
    [Google Scholar]
  25. Naas T., Bogaerts P., Bauraing C., Degheldre Y., Glupczynski Y., Nordmann P.. ( 2006;). Emergence of PER and VEB extended-spectrum β-lactamases in Acinetobacter baumannii in Belgium. . J Antimicrob Chemother 58:, 178–182. [CrossRef][PubMed]
    [Google Scholar]
  26. Naas T., Nordmann P., Heidt A.. ( 2007;). Intercountry transfer of PER-1 extended-spectrum β-lactamase-producing Acinetobacter baumannii from Romania. . Int J Antimicrob Agents 29:, 226–228. [CrossRef][PubMed]
    [Google Scholar]
  27. Nordmann P., Ronco E., Naas T., Duport C., Michel-Briand Y., Labia R.. ( 1993;). Characterization of a novel extended-spectrum β-lactamase from Pseudomonas aeruginosa.. Antimicrob Agents Chemother 37:, 962–969. [CrossRef][PubMed]
    [Google Scholar]
  28. Pagani L., Mantengoli E., Migliavacca R., Nucleo E., Pollini S., Spalla M., Daturi R., Romero E., Rossolini G. M.. ( 2004;). Multifocal detection of multidrug-resistant Pseudomonas aeruginosa producing the PER-1 extended-spectrum β-lactamase in northern Italy. . J Clin Microbiol 42:, 2523–2529. [CrossRef][PubMed]
    [Google Scholar]
  29. Picão R. C., Poirel L., Gales A. C., Nordmann P.. ( 2009a;). Diversity of β-lactamases produced by ceftazidime-resistant Pseudomonas aeruginosa isolates causing bloodstream infections in Brazil. . Antimicrob Agents Chemother 53:, 3908–3913. [CrossRef][PubMed]
    [Google Scholar]
  30. Picão R. C., Poirel L., Gales A. C., Nordmann P.. ( 2009b;). Further identification of CTX-M-2 extended-spectrum β-lactamase in Pseudomonas aeruginosa.. Antimicrob Agents Chemother 53:, 2225–2226. [CrossRef][PubMed]
    [Google Scholar]
  31. Pitout J. D., Gregson D. B., Poirel L., McClure J. A., Le P., Church D. L.. ( 2005;). Detection of Pseudomonas aeruginosa producing metallo-β-lactamases in a large centralized laboratory. . J Clin Microbiol 43:, 3129–3135. [CrossRef][PubMed]
    [Google Scholar]
  32. Poirel L., Weldhagen G. F., Naas T., De Champs C., Dove M. G., Nordmann P.. ( 2001;). GES-2, a class A β-lactamase from Pseudomonas aeruginosa with increased hydrolysis of imipenem. . Antimicrob Agents Chemother 45:, 2598–2603. [CrossRef][PubMed]
    [Google Scholar]
  33. Poirel L., Naas T., Nordmann P.. ( 2010;). Diversity, epidemiology, and genetics of class D β-lactamases. . Antimicrob Agents Chemother 54:, 24–38. [CrossRef][PubMed]
    [Google Scholar]
  34. Qu T. T., Zhang J. L., Wang J., Tao J., Yu Y. S., Chen Y. G., Zhou J. Y., Li L. J.. ( 2009;). Evaluation of phenotypic tests for detection of metallo-β-lactamase-producing Pseudomonas aeruginosa strains in China. . J Clin Microbiol 47:, 1136–1142. [CrossRef][PubMed]
    [Google Scholar]
  35. Rossolini G. M., D’Andrea M. M., Mugnaioli C.. ( 2008;). The spread of CTX-M-type extended-spectrum β-lactamases. . Clin Microbiol Infect 14: (Suppl. 1), 33–41. [CrossRef][PubMed]
    [Google Scholar]
  36. Scoulica E., Aransay A., Tselentis Y.. ( 1995;). Molecular characterization of the OXA-7 β-lactamase gene. . Antimicrob Agents Chemother 39:, 1379–1382. [CrossRef][PubMed]
    [Google Scholar]
  37. Upadhyay S., Sen M. R., Bhattacharjee A.. ( 2010;). Presence of different beta-lactamase classes among clinical isolates of Pseudomonas aeruginosa expressing AmpC beta-lactamase enzyme. . J Infect Dev Ctries 4:, 239–242.[PubMed]
    [Google Scholar]
  38. Vahaboglu H., Oztürk R., Aygün G., Coşkunkan F., Yaman A., Kaygusuz A., Leblebicioglu H., Balik I., Aydin K., Otkun M.. ( 1997;). Widespread detection of PER-1-type extended-spectrum beta-lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: a nationwide multicenter study. . Antimicrob Agents Chemother 41:, 2265–2269.[PubMed]
    [Google Scholar]
  39. Walsh T. R., Toleman M. A., Poirel L., Nordmann P.. ( 2005;). Metallo-β-lactamases: the quiet before the storm?. Clin Microbiol Rev 18:, 306–325. [CrossRef][PubMed]
    [Google Scholar]
  40. Weldhagen G. F., Poirel L., Nordmann P.. ( 2003;). Ambler class A extended-spectrum β-lactamases in Pseudomonas aeruginosa: novel developments and clinical impact. . Antimicrob Agents Chemother 47:, 2385–2392. [CrossRef][PubMed]
    [Google Scholar]
  41. Xavier D. E., Picão R. C., Girardello R., Fehlberg L. C., Gales A. C.. ( 2010;). Efflux pumps expression and its association with porin down-regulation and β-lactamase production among Pseudomonas aeruginosa causing bloodstream infections in Brazil. . BMC Microbiol 10:, 217. [CrossRef][PubMed]
    [Google Scholar]
  42. Yamano Y., Nishikawa T., Fujimura T., Yutsudou T., Tsuji M., Miwa H.. ( 2006;). Occurrence of PER-1 producing clinical isolates of Pseudomonas aeruginosa in Japan and their susceptibility to doripenem. . J Antibiot (Tokyo) 59:, 791–796. [CrossRef][PubMed]
    [Google Scholar]
  43. Yatsuyanagi J., Saito S., Harata S., Suzuki N., Ito Y., Amano K., Enomoto K.. ( 2004;). Class 1 integron containing metallo-β-lactamase gene blaVIM-2 in Pseudomonas aeruginosa clinical strains isolated in Japan. . Antimicrob Agents Chemother 48:, 626–628. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.069427-0
Loading
/content/journal/jmm/10.1099/jmm.0.069427-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error