1887

Abstract

The aim of this study was to assess the epidemiology and molecular basis of the infection and dissemination of multidrug-resistant (MDRAB) in three sequential outbreaks at the intensive care units (ICUs) of a tertiary university hospital in Granada, Spain, between 2009 and 2011. Strains from all patients infected and/or colonized by MDRAB during outbreak periods were characterized using PFGE and multilocus sequence typing (MLST). The first outbreak appeared in the summer of 2009 involving 38 ICU patients: 25 from a Traumatology–Rehabilitation hospital (TRH) and 13 from a Medical–Surgery hospital (MSH). Between 2010 and 2011, outbreaks were limited to the MSH-ICU, affecting 9 and 11 patients, respectively. Two PFGE types were detected. In the 2009 outbreak, two clones were identified: profile 1 strains were isolated at the TRH, whilst profile 2 was isolated at the MSH. Only one clone was identified in the 2010 and 2011 outbreaks: the profile 2 clone detected at the MSH in 2009. After MLST analysis, a single sequence type (ST92) was identified. This suggested that an endemic strain could evolve and cause localized outbreaks in vulnerable patients. Multiplex PCR for OXA group enzymes yielded a positive result for and genes, and gene sequencing showed the presence of . However, the absence of IS upstream of the gene suggested the absence of OXA-51 expression. The susceptibility pattern was not an appropriate method for MDRAB surveillance, as several susceptibility patterns were identified in a single clone. Consequently, molecular methods of characterization are recommended for epidemiological surveillance of MDRAB.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.067280-0
2014-08-01
2020-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/8/1093.html?itemId=/content/journal/jmm/10.1099/jmm.0.067280-0&mimeType=html&fmt=ahah

References

  1. Adams-Haduch J. M., Onuoha E. O., Bogdanovich T., Tian G. B., Marschall J., Urban C. M., Spellberg B. J., Rhee D., Halstead D. C. et al. 2011; Molecular epidemiology of carbapenem-nonsusceptible Acinetobacter baumannii in the United States. J Clin Microbiol 49:3849–3854 [CrossRef][PubMed]
    [Google Scholar]
  2. Bartual S. G., Seifert H., Hippler C., Luzon M. A., Wisplinghoff H., Rodríguez-Valera F. 2005; Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii . J Clin Microbiol 43:4382–4390 [CrossRef][PubMed]
    [Google Scholar]
  3. CLSI 2011; Performance Standards for Antimicrobial Susceptibility Testing; 21st Informational Supplement M100-S21. Wayne, PA: Clinical and Laboratory Standards Institute;
  4. Endo S., Yano H., Hirakata Y., Arai K., Kanamori H., Ogawa M., Shimojima M., Ishibashi N., Aoyagi T. et al. 2012; Molecular epidemiology of carbapenem-non-susceptible Acinetobacter baumannii in Japan. J Antimicrob Chemother 67:1623–1626 [CrossRef][PubMed]
    [Google Scholar]
  5. Fernández-Cuenca F., Pascual A., Ribera A., Vila J., Bou G., Cisneros J. M., Rodríguez-Baño J., Pachón J., Martínez-Martínez L. Grupo de Estudio de Infección Hospitalaria 2004; Clonal diversity and antimicrobial susceptibility of Acinetobacter baumannii isolated in Spain. A nationwide multicenter study: GEIH-Ab project (2000). Enferm Infecc Microbiol Clin 22:267–271 (in Spanish) [PubMed] [CrossRef]
    [Google Scholar]
  6. Garner J. S., Jarvis W. R., Emori T. G., Horan T. C., Hughes J. M. 1988; CDC definitions for nosocomial infections, 1988. Am J Infect Control 16:128–140 [CrossRef][PubMed]
    [Google Scholar]
  7. Jawad A., Hawkey P. M., Heritage J., Snelling A. M. 1994; Description of Leeds Acinetobacter Medium, a new selective and differential medium for isolation of clinically important Acinetobacter spp., and comparison with Herellea agar and Holton’s agar. J Clin Microbiol 32:2353–2358[PubMed]
    [Google Scholar]
  8. Lopes B. S., Evans B. A., Amyes S. G. 2012; Disruption of the bla OXA-51-like gene by ISAba16 and activation of the bla OXA-58 gene leading to carbapenem resistance in Acinetobacter baumannii Ab244. J Antimicrob Chemother 67:59–63 [CrossRef][PubMed]
    [Google Scholar]
  9. Magiorakos A. P., Srinivasan A., Carey R. B., Carmeli Y., Falagas M. E., Giske C. G., Harbarth S., Hindler J. F., Kahlmeter G. et al. 2012; Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281 [CrossRef][PubMed]
    [Google Scholar]
  10. Marqué S., Poirel L., Héritier C., Brisse S., Blasco M. D., Filip R., Coman G., Naas T., Nordmann P. 2005; Regional occurrence of plasmid-mediated carbapenem-hydrolyzing oxacillinase OXA-58 in Acinetobacter spp. in Europe. J Clin Microbiol 43:4885–4888 [CrossRef][PubMed]
    [Google Scholar]
  11. Mugnier P. D., Poirel L., Naas T., Nordmann P. 2010; Worldwide dissemination of the bla OXA-23 carbapenemase gene of Acinetobacter baumannii . Emerg Infect Dis 16:35–40 [CrossRef][PubMed]
    [Google Scholar]
  12. Nigro S. J., Hall R. M. 2012; Tn6167, an antibiotic resistance island in an Australian carbapenem-resistant Acinetobacter baumannii GC2, ST92 isolate. J Antimicrob Chemother 67:1342–1346 [CrossRef][PubMed]
    [Google Scholar]
  13. Ruiz M., Marti S., Fernandez-Cuenca F., Pascual A., Vila J. 2007; High prevalence of carbapenem-hydrolysing oxacillinases in epidemiologically related and unrelated Acinetobacter baumannii clinical isolates in Spain. Clin Microbiol Infect 13:1192–1198 [CrossRef][PubMed]
    [Google Scholar]
  14. Rumbo C., Gato E., López M., Ruiz de Alegría C., Fernández-Cuenca F., Martínez-Martínez L., Vila J., Pachón J., Cisneros J. M. et al. 2013; Contribution of efflux pumps, porins, and β-lactamases to multidrug resistance in clinical isolates of Acinetobacter baumannii . Antimicrob Agents Chemother 57:5247–5257 [CrossRef][PubMed]
    [Google Scholar]
  15. Seifert H., Dolzani L., Bressan R., van der Reijden T., van Strijen B., Stefanik D., Heersma H., Dijkshoorn L. 2005; Standardization and interlaboratory reproducibility assessment of pulsed-field gel electrophoresis-generated fingerprints of Acinetobacter baumannii . J Clin Microbiol 43:4328–4335 [CrossRef][PubMed]
    [Google Scholar]
  16. Sevillano E., Fernández E., Bustamante Z., Zabalaga S., Rosales I., Umaran A., Gallego L. 2012; Emergence and clonal dissemination of carbapenem-hydrolysing OXA-58-producing Acinetobacter baumannii isolates in Bolivia. J Med Microbiol 61:80–84 [CrossRef][PubMed]
    [Google Scholar]
  17. Tacconelli E., Cataldo M. A., Dancer S. J., De Angelis G., Falcone M., Frank U., Kahlmeter G., Pan A., Petrosillo N. et al. 2014; ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin Microbiol Infect 20:Suppl 11–55 [CrossRef][PubMed]
    [Google Scholar]
  18. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B. 1995; Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239[PubMed]
    [Google Scholar]
  19. Turton J. F., Ward M. E., Woodford N., Kaufmann M. E., Pike R., Livermore D. M., Pitt T. L. 2006; The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii . FEMS Microbiol Lett 258:72–77 [CrossRef][PubMed]
    [Google Scholar]
  20. Woodford N., Ellington M. J., Coelho J. M., Turton J. F., Ward M. E., Brown S., Amyes S. G., Livermore D. M. 2006; Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 27:351–353 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.067280-0
Loading
/content/journal/jmm/10.1099/jmm.0.067280-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error