1887

Abstract

There is mounting evidence for a possible role for in Crohn’s disease (CD). However, the pathogenic potential of remains disputed due to its presence in healthy subjects. It is documented that genetic diversity exists within this species, with some strains possessing putative virulence determinants such as exotoxin 9/DnaI that may enable them to persist intracellularly in host cells. In order to clarify this, we employed real-time PCR to determine and exotoxin 9 levels within faecal samples of CD patients and healthy controls, and correlated these levels with abundances of microbial taxa identified in a subset of subjects. Both and exotoxin 9 levels were found to be higher in CD patients than healthy controls, suggesting not only that CD patients had a greater abundance of but also that their strains were likely to be more virulent. Moreover, levels correlated with the exotoxin 9 levels in CD patients but not in healthy controls, indicating that healthy controls were colonized by non-virulent strains. Correlations with the intestinal microbiota found levels to correlate with , and , while exotoxin 9 levels correlated with , , and . This suggests that either the composition of the intestinal microbial flora has the ability to influence levels of both virulent and non-virulent strains, or infection with may modulate the levels of specific bacterial taxa within the gastrointestinal tract.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.067231-0
2014-01-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/1/99.html?itemId=/content/journal/jmm/10.1099/jmm.0.067231-0&mimeType=html&fmt=ahah

References

  1. Aabenhus R., Permin H., On S. L., Andersen L. P.. ( 2002;). Prevalence of Campylobacter concisus in diarrhoea of immunocompromised patients. . Scand J Infect Dis 34:, 248–252. [CrossRef][PubMed]
    [Google Scholar]
  2. Bailey M. T., Dowd S. E., Parry N. M., Galley J. D., Schauer D. B., Lyte M.. ( 2010;). Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium.. Infect Immun 78:, 1509–1519. [CrossRef][PubMed]
    [Google Scholar]
  3. Deshpande N. P., Kaakoush N. O., Wilkins M. R., Mitchell H. M.. ( 2013;). Comparative genomics of Campylobacter concisus isolates reveals genetic diversity and provides insights into disease association. . BMC Genomics 14:, 585. [CrossRef][PubMed]
    [Google Scholar]
  4. Dorsch M., Lovet D. N., Bailey G. D.. ( 2001;). Fusobacterium equinum sp. nov., from the oral cavity of horses. . Int J Syst Evol Microbiol 51:, 1959–1963. [CrossRef][PubMed]
    [Google Scholar]
  5. Downes J., Munson M., Wade W. G.. ( 2003;). Dialister invisus sp. nov., isolated from the human oral cavity. . Int J Syst Evol Microbiol 53:, 1937–1940. [CrossRef][PubMed]
    [Google Scholar]
  6. Hansen R., Berry S. H., Mukhopadhya I., Thomson J. M., Saunders K. A., Nicholl C. E., Bisset W. M., Loganathan S., Mahdi G.. & other authors ( 2013;). The microaerophilic microbiota of de-novo paediatric inflammatory bowel disease: the BISCUIT study. . PLoS ONE 8:, e58825. [CrossRef][PubMed]
    [Google Scholar]
  7. Holmstrøm K., Collins M. D., Møller T., Falsen E., Lawson P. A.. ( 2004;). Subdoligranulum variabile gen. nov., sp. nov. from human feces. . Anaerobe 10:, 197–203. [CrossRef][PubMed]
    [Google Scholar]
  8. Kaakoush N. O., Mitchell H. M.. ( 2012;). Campylobacter concisus – a new player in intestinal disease. . Front Cell Infect Microbiol 2:, 4. [CrossRef][PubMed]
    [Google Scholar]
  9. Kaakoush N. O., Deshpande N. P., Wilkins M. R., Tan C. G., Burgos-Portugal J. A., Raftery M. J., Day A. S., Lemberg D. A., Mitchell H.. ( 2011;). The pathogenic potential of Campylobacter concisus strains associated with chronic intestinal diseases. . PLoS ONE 6:, e29045. [CrossRef][PubMed]
    [Google Scholar]
  10. Kaakoush N. O., Day A. S., Huinao K. D., Leach S. T., Lemberg D. A., Dowd S. E., Mitchell H. M.. ( 2012;). Microbial dysbiosis in pediatric patients with Crohn’s disease. . J Clin Microbiol 50:, 3258–3266. [CrossRef][PubMed]
    [Google Scholar]
  11. Lastovica A. J.. ( 2009;). Clinical relevance of Campylobacter concisus isolated from pediatric patients. . J Clin Microbiol 47:, 2360. [CrossRef][PubMed]
    [Google Scholar]
  12. Liu C., Finegold S. M., Song Y., Lawson P. A.. ( 2008;). Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces. . Int J Syst Evol Microbiol 58:, 1896–1902. [CrossRef][PubMed]
    [Google Scholar]
  13. Mahendran V., Riordan S. M., Grimm M. C., Tran T. A., Major J., Kaakoush N. O., Mitchell H., Zhang L.. ( 2011;). Prevalence of Campylobacter species in adult Crohn’s disease and the preferential colonization sites of Campylobacter species in the human intestine. . PLoS ONE 6:, e25417. [CrossRef][PubMed]
    [Google Scholar]
  14. Man S. M., Zhang L., Day A. S., Leach S. T., Lemberg D. A., Mitchell H.. ( 2010;). Campylobacter concisus and other Campylobacter species in children with newly diagnosed Crohn’s disease. . Inflamm Bowel Dis 16:, 1008–1016. [CrossRef][PubMed]
    [Google Scholar]
  15. Man S. M., Kaakoush N. O., Mitchell H. M.. ( 2011;). The role of bacteria and pattern-recognition receptors in Crohn’s disease. . Nature Rev Gastroenterol Hepatol 8:, 152–168. [CrossRef][PubMed]
    [Google Scholar]
  16. Nielsen H. L., Engberg J., Ejlertsen T., Bücker R., Nielsen H.. ( 2012;). Short-term and medium-term clinical outcomes of Campylobacter concisus infection. . Clin Microbiol Infect 18:, E459–E465. [CrossRef][PubMed]
    [Google Scholar]
  17. Nielsen H. L., Ejlertsen T., Engberg J., Nielsen H.. ( 2013;). High incidence of Campylobacter concisus in gastroenteritis in North Jutland, Denmark: a population-based study. . Clin Microbiol Infect 19:, 445–450. [CrossRef][PubMed]
    [Google Scholar]
  18. Siqueira J. F. Jr, Rôças I. N.. ( 2009;). The microbiota of acute apical abscesses. . J Dent Res 88:, 61–65. [CrossRef][PubMed]
    [Google Scholar]
  19. Wu G. D., Chen J., Hoffmann C., Bittinger K., Chen Y. Y., Keilbaugh S. A., Bewtra M., Knights D., Walters W. A.. & other authors ( 2011;). Linking long-term dietary patterns with gut microbial enterotypes. . Science 334:, 105–108. [CrossRef][PubMed]
    [Google Scholar]
  20. Zhang L., Man S. M., Day A. S., Leach S. T., Lemberg D. A., Dutt S., Stormon M., Otley A., O’Loughlin E. V.. & other authors ( 2009;). Detection and isolation of Campylobacter species other than C. jejuni from children with Crohn’s disease. . J Clin Microbiol 47:, 453–455. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.067231-0
Loading
/content/journal/jmm/10.1099/jmm.0.067231-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error