1887

Abstract

Antibiotic resistance of isolated from urinary tract infections (UTIs) is increasing worldwide. A total of 41 isolates were obtained from urine samples from hospitalized patients with a UTI in three hospitals in the northern districts of the West Bank, Palestine during March and June 2011. Resistance rates were: erythromycin (95 %), trimethoprim–sulfamethoxazole (59 %), ciprofloxacin (56 %), gentamicin (27 %), imipenem (22 %), amoxicillin (93 %), amoxicillin–clavulanic acid (32 %), ceftazidime (66 %) and cefotaxime (71 %). No meropenem-resistant isolates were identified in this study. Among the isolates, phylogenetic group B2 was observed in 13 isolates, D in 12 isolates, A in 11 isolates and B1 in five isolates. Thirty-five of the isolates were positive for an extended-spectrum β-lactamase phenotype. Among these isolates, the gene was detected in 25, and eight harboured the gene. None of the isolates contained the gene. Transformation experiments indicated that some of the β-lactamase genes (i.e. and ) with co-resistance to erythromycin and gentamicin were plasmid encoded and transmissible. Apart from this, enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) revealed that the 41 isolates were genetically diverse and comprised a heterogeneous population with 11 ERIC-PCR profiles at a 60 % similarity level.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.067140-0
2014-02-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/2/229.html?itemId=/content/journal/jmm/10.1099/jmm.0.067140-0&mimeType=html&fmt=ahah

References

  1. Akpaka P. E., Legall B., Padman J.. ( 2010;). Molecular detection and epidemiology of extended-spectrum beta-lactamase genes prevalent in clinical isolates of Klebsiella pneumoniae and E. coli from Trinidad and Tobago. . West Indian Med J 59:, 591–596.[PubMed]
    [Google Scholar]
  2. Al-Assil B., Mahfoud M., Hamzeh A. R.. ( 2013;). Resistance trends and risk factors of extended-spectrum β-lactamases in Escherichia coli infections in Aleppo, Syria. . Am J Infect Control 41:, 597–600. [CrossRef][PubMed]
    [Google Scholar]
  3. Baral P., Neupane S., Marasini B. P., Ghimire K. R., Lekhak B., Shrestha B.. ( 2012;). High prevalence of multidrug resistance in bacterial uropathogens from Kathmandu, Nepal. . BMC Res Notes 5:, 38. [CrossRef][PubMed]
    [Google Scholar]
  4. Chakupurakal R., Ahmed M., Sobithadevi D. N., Chinnappan S., Reynolds T.. ( 2010;). Urinary tract pathogens and resistance pattern. . J Clin Pathol 63:, 652–654. [CrossRef][PubMed]
    [Google Scholar]
  5. CLSI. ( 2013;). Performance Standards for Antimicrobial Susceptibility Testing; 23rd Informational Supplement M100-S23. . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  6. Harley J. P., Prescott L. M.. ( 2002;). Laboratory Exercises in Microbiology, , 5th edn., pp. 37–237. Boston, MA:: McGraw-Hill Publishers;.
    [Google Scholar]
  7. Karlowsky J. A., Lagacé-Wiens P. R., Simner P. J., DeCorby M. R., Adam H. J., Walkty A., Hoban D. J., Zhanel G. G.. ( 2011;). Antimicrobial resistance in urinary tract pathogens in Canada from 2007 to 2009: CANWARD surveillance study. . Antimicrob Agents Chemother 55:, 3169–3175. [CrossRef][PubMed]
    [Google Scholar]
  8. Khanna N., Boyes J., Lansdell P. M., Hamouda A., Amyes S. G.. ( 2012;). Molecular epidemiology and antimicrobial resistance pattern of extended-spectrum-β-lactamase-producing Enterobacteriaceae in Glasgow, Scotland. . J Antimicrob Chemother 67:, 573–577. [CrossRef][PubMed]
    [Google Scholar]
  9. Lee S., Yu J. K., Park K., Oh E. J., Kim S. Y., Park Y. J.. ( 2010;). Phylogenetic groups and virulence factors in pathogenic and commensal strains of Escherichia coli and their association with blaCTX-M. . Ann Clin Lab Sci 40:, 361–367.[PubMed]
    [Google Scholar]
  10. Leflon-Guibout V., Jurand C., Bonacorsi S., Espinasse F., Guelfi M. C., Duportail F., Heym B., Bingen E., Nicolas-Chanoine M. H.. ( 2004;). Emergence and spread of three clonally related virulent isolates of CTX-M-15-producing Escherichia coli with variable resistance to aminoglycosides and tetracycline in a French geriatric hospital. . Antimicrob Agents Chemother 48:, 3736–3742. [CrossRef][PubMed]
    [Google Scholar]
  11. Livermore D. M., Hawkey P. M.. ( 2005;). CTX-M: changing the face of ESBLs in the UK. . J Antimicrob Chemother 56:, 451–454. [CrossRef][PubMed]
    [Google Scholar]
  12. Ma K. L., Wang C. X.. ( 2013;). Analysis of the spectrum and antibiotic resistance of uropathogens in vitro: results based on a retrospective study from a tertiary hospital. . Am J Infect Control 41:, 601–606. [CrossRef][PubMed]
    [Google Scholar]
  13. Mendonça N., Leitão J., Manageiro V., Ferreira E., Caniça M.. ( 2007;). Spread of extended-spectrum β-lactamase CTX-M-producing Escherichia coli clinical isolates in community and nosocomial environments in Portugal. . Antimicrob Agents Chemother 51:, 1946–1955. [CrossRef][PubMed]
    [Google Scholar]
  14. Mukherjee M., Basu S., Mukherjee S. K., Majumder M.. ( 2013;). Multidrug-resistance and extended spectrum beta-lactamase production in uropathogenic E. coli which were isolated from hospitalized patients in Kolkata, India. . J Clin Diagn Res 7:, 449–453.[PubMed]
    [Google Scholar]
  15. Murugan K., Savitha T., Vasanthi S.. ( 2012;). Retrospective study of antibiotic resistance among uropathogens from rural teaching hospital, Tamilnadu, India. . Asian Pac J Trop Dis 2:, 375–380. [CrossRef]
    [Google Scholar]
  16. Naseer U., Sundsfjord A.. ( 2011;). The CTX-M conundrum: dissemination of plasmids and Escherichia coli clones. . Microb Drug Resist 17:, 83–97. [CrossRef][PubMed]
    [Google Scholar]
  17. Peirano G., Pitout J. D.. ( 2010;). Molecular epidemiology of Escherichia coli producing CTX-M beta-lactamases: the worldwide emergence of clone ST131 O25 : H4. . Int J Antimicrob Agents 35:, 316–321. [CrossRef][PubMed]
    [Google Scholar]
  18. Pitout J. D., Laupland K. B., Church D. L., Menard M. L., Johnson J. R.. ( 2005;). Virulence factors of Escherichia coli isolates that produce CTX-M-type extended-spectrum beta-lactamases. . Antimicrob Agents Chemother 49:, 4667–4670. [CrossRef][PubMed]
    [Google Scholar]
  19. Rakotonirina H. C., Garin B., Randrianirina F., Richard V., Talarmin A., Arlet G.. ( 2013;). Molecular characterization of multidrug-resistant extended-spectrum β-lactamase-producing Enterobacteriaceae isolated in Antananarivo, Madagascar. . BMC Microbiol 13:, 85. [CrossRef][PubMed]
    [Google Scholar]
  20. Smet A., Martel A., Persoons D., Dewulf J., Heyndrickx M., Claeys G., Lontie M., Van Meensel B., Herman L.. & other authors ( 2010;). Characterization of extended-spectrum β-lactamases produced by Escherichia coli isolated from hospitalized and non-hospitalized patients: emergence of CTX-M-15-producing strains causing urinary tract infections. . Microb Drug Resist 16:, 129–134. [CrossRef][PubMed]
    [Google Scholar]
  21. Takahashi S., Nagano Y.. ( 1984;). Rapid procedure for isolation of plasmid DNA and application to epidemiological analysis. . J Clin Microbiol 20:, 608–613.[PubMed]
    [Google Scholar]
  22. Vaidya V. K.. ( 2011;). Horizontal transfer of antimicrobial resistance by extended-spectrum β lactamase-producing Enterobacteriaceae.. J Lab Physicians 3:, 37–42. [CrossRef][PubMed]
    [Google Scholar]
  23. Wollheim C., Guerra I. M. F., Conte V. D., Hoffman S. P., Schreiner F. J., Delamare A. P. L., Barth A. L., Echeverrigaray S., da Costa S. O. P.. ( 2011;). Nosocomial and community infections due to class A extended-spectrum β-lactamase (ESBLA)-producing Escherichia coli and Klebsiella spp. in southern Brazil. . Braz J Infect Dis 15:, 138–143.[PubMed]
    [Google Scholar]
  24. Xiao Y. H., Giske C. G., Wei Z. Q., Shen P., Heddini A., Li L. J.. ( 2011;). Epidemiology and characteristics of antimicrobial resistance in China. . Drug Resist Updat 14:, 236–250. [CrossRef][PubMed]
    [Google Scholar]
  25. Zhang Y., Yang J., Ye L., Luo Y., Wang W., Zhou W., Cui Z., Han L.. ( 2012;). Characterization of clinical multidrug-resistant Escherichia coli and Klebsiella pneumoniae isolates, 2007-2009, China. . Microb Drug Resist 18:, 465–470. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.067140-0
Loading
/content/journal/jmm/10.1099/jmm.0.067140-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error