1887

Abstract

A weighted, multi-attribute approach was used to compare three methods for direct extraction of DNA from 15 microscopy-positive stools: (1) a QIAamp spin-column method for stools including a 10 min incubation at 95 °C, (2) method 1 preceded by five freeze–thaw cycles and (3) bead beating with guanidine thiocyanate using a FastPrep-28 machine followed by liquid-phase silica purification of DNA. The attributes compared included DNA yield measured using a new triose phosphate isomerase () gene probe-based real-time PCR, also described here. All three methods shared 100 % PCR positivity, while the bead-beating method provided the highest DNA yield (<0.01). However, when other weighted attributes, including biocontainment, resources and technical requirements, were also considered, spin-column extraction with prior freeze–thaw treatment (method 2) was deemed the most desirable and was selected for use. The real-time PCR typing assay was designed to discriminate between the main human infectious assemblages of s (A and B) and was evaluated initially using standard isolates. Validation using microscopy-positive stools from 78 clinical giardiasis cases revealed 100 % typability; 20 (26 %) samples contained assemblage A, 56 (72 %) assemblage B and two (3 %) assemblages A and B. While the epidemiological significance of assemblage distribution will be revealed as more isolates are typed and analysed with patient demographic and exposure data, the utility of this assay and its ready application in our laboratory workflow and result turnaround margins is already evident.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.066050-0
2014-01-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/1/38.html?itemId=/content/journal/jmm/10.1099/jmm.0.066050-0&mimeType=html&fmt=ahah

References

  1. Almeida A., Pozio E., Cacciò S. M.. ( 2010;). Genotyping of Giardia duodenalis cysts by new real-time PCR assays for detection of mixed infections in human samples. . Appl Environ Microbiol 76:, 1895–1901. [CrossRef][PubMed]
    [Google Scholar]
  2. Babaei Z., Oormazdi H., Rezaie S., Rezaeian M., Razmjou E.. ( 2011;). Giardia intestinalis: DNA extraction approaches to improve PCR results. . Exp Parasitol 128:, 159–162. [CrossRef][PubMed]
    [Google Scholar]
  3. Becher K. A., Robertson I. D., Fraser D. M., Palmer D. G., Thompson R. C. A.. ( 2004;). Molecular epidemiology of Giardia and Cryptosporidium infections in dairy calves originating from three sources in Western Australia. . Vet Parasitol 123:, 1–9. [CrossRef][PubMed]
    [Google Scholar]
  4. Bonhomme J., Le Goff L., Lemée V., Gargala G., Ballet J. J., Favennec L.. ( 2011;). Limitations of tpi and bg genes sub-genotyping for characterization of human Giardia duodenalis isolates. . Parasitol Int 60:, 327–330. [CrossRef][PubMed]
    [Google Scholar]
  5. Boom R., Sol C. J. A., Salimans M. M. M., Jansen C. L., Wertheim-van Dillen P. M. E., van der Noordaa J.. ( 1990;). Rapid and simple method for purification of nucleic acids. . J Clin Microbiol 28:, 495–503.[PubMed]
    [Google Scholar]
  6. Breathnach A. S., McHugh T. D., Butcher P. D.. ( 2010;). Prevalence and clinical correlations of genetic subtypes of Giardia lamblia in an urban setting. . Epidemiol Infect 138:, 1459–1467. [CrossRef][PubMed]
    [Google Scholar]
  7. Cacciò S. M., Beck R., Lalle M., Marinculic A., Pozio E.. ( 2008;). Multilocus genotyping of Giardia duodenalis reveals striking differences between assemblages A and B. . Int J Parasitol 38:, 1523–1531. [CrossRef][PubMed]
    [Google Scholar]
  8. Ellam H., Verlander N. Q., Lamden K., Cheesbrough J. S., Durband C. A., James S.. ( 2008;). Surveillance of giardiasis in Northwest England 1996–2006: impact of an enzyme immunoassay test. . Euro Surveill 13:, pii = 18977.[PubMed]
    [Google Scholar]
  9. Feng Y., Xiao L.. ( 2011;). Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. . Clin Microbiol Rev 24:, 110–140. [CrossRef][PubMed]
    [Google Scholar]
  10. Geurden T., Levecke B., Cacció S. M., Visser A., De Groote G., Casaert S., Vercruysse J., Claerebout E.. ( 2009;). Multilocus genotyping of Cryptosporidium and Giardia in non-outbreak related cases of diarrhoea in human patients in Belgium. . Parasitology 136:, 1161–1168. [CrossRef][PubMed]
    [Google Scholar]
  11. Guy R. A., Xiao C., Horgen P. A.. ( 2004;). Real-time PCR assay for detection and genotype differentiation of Giardia lamblia in stool specimens. . J Clin Microbiol 42:, 3317–3320. [CrossRef][PubMed]
    [Google Scholar]
  12. Health Protection Agency ( 2011;). Giardia lamblia Laboratory reports: all identifications reported to the Health Protection Agency England and Wales, 2000–2010. . http://www.hpa.org.uk/Topics/InfectiousDiseases/InfectionsAZ/Giardia/EpidemiologicalData/gairDataEw/. Accessed 26/01/2013.
  13. Health Protection Agency ( 2012;). Investigation of specimens other than blood for parasites. UK Standards for Microbiology Investigations. . B 31, Issue 3.1. http://www.hpa.org.uk/SMI/pdf. Accessed 18/03/2013.
  14. Lebbad M., Petersson I., Karlsson L., Botero-Kleiven S., Andersson J. O., Svenungsson B., Svärd S. G.. ( 2011;). Multilocus genotyping of human Giardia isolates suggests limited zoonotic transmission and association between assemblage B and flatulence in children. . PLoS Negl Trop Dis 5:, e1262. [CrossRef][PubMed]
    [Google Scholar]
  15. McLauchlin J., Pedraza-Díaz S., Amar-Hoetzeneder C., Nichols G. L.. ( 1999;). Genetic characterization of Cryptosporidium strains from 218 patients with diarrhea diagnosed as having sporadic cryptosporidiosis. . J Clin Microbiol 37:, 3153–3158.[PubMed]
    [Google Scholar]
  16. Robertson L. J.. ( 2009;). Giardia and Cryptosporidium infections in sheep and goats: a review of the potential for transmission to humans via environmental contamination. . Epidemiol Infect 137:, 913–921. [CrossRef][PubMed]
    [Google Scholar]
  17. Robertson L. J., Forberg T., Hermansen L., Gjerde B. K., Alvsvåg J. O., Langeland N.. ( 2006;). Cryptosporidium parvum infections in Bergen, Norway, during an extensive outbreak of waterborne giardiasis in autumn and winter 2004. . Appl Environ Microbiol 72:, 2218–2220. [CrossRef][PubMed]
    [Google Scholar]
  18. Sulaiman I. M., Fayer R., Bern C., Gilman R. H., Trout J. M., Schantz P. M., Das P., Lal A. A., Xiao L.. ( 2003;). Triosephosphate isomerase gene characterization and potential zoonotic transmission of Giardia duodenalis. . Emerg Infect Dis 9:, 1444–1452. [CrossRef][PubMed]
    [Google Scholar]
  19. Tam C. C., Rodrigues L. C., Viviani L., Dodds J. P., Evans M. R., Hunter P. R., Gray J. J., Letley L. H., Rait G.. & other authors ( 2012;). Longitudinal study of infectious intestinal disease in the UK (IID2 study): incidence in the community and presenting to general practice. . Gut 61:, 69–77. [CrossRef][PubMed]
    [Google Scholar]
  20. Tuli L., Singh D. K., Gulati A. K., Sundar S., Mohapatra T. M.. ( 2010;). A multiattribute utility evaluation of different methods for the detection of enteric protozoa causing diarrhea in AIDS patients. . BMC Microbiol 10:, 11. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.066050-0
Loading
/content/journal/jmm/10.1099/jmm.0.066050-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error