1887

Abstract

is a common cause of nosocomial infections and is associated with high rates of mortality. In order to facilitate rapid and sensitive identification of the most prevalent serotypes of , we have developed a 4-valent real-time PCR-based assay using oligonucleotides specific for open-reading frames constituting the O-antigen-specific lipopolysaccharide loci of . The assay simultaneously detects and differentiates between each of the four serotypes IATS-O1, -O6, -O11 and serogroup 2 (IATS-O2, -O5, and -O16) with high sensitivity and specificity in a single-tube reaction. No cross-reactivity was observed with other serotypes of or other microbial species, and reproducibility was demonstrated regardless of template, i.e. purified DNA, bacterial culture and clinical specimens (broncho-alveolar lavage). The limit of detection of the assay was approximately 100 copies per reaction for IATS-O1, -O2 and -O11, and 50 copies per reaction for IATS-O6. Comparison of the assay specificity with a commercially available slide agglutination kit showed consistent results; however, the number of non-typable isolates was reduced by 15 % using the genotyping assay. Use of the 4-valent genotyping assay in the context of a clinical trial resulted in identification of pneumonia patients positive for the IATS-O11 serotype, and hence eligible for therapy with panobacumab (an investigational monoclonal antibody against the O-polysaccharide of serotype IATS-O11).

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.066043-0
2014-04-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/4/508.html?itemId=/content/journal/jmm/10.1099/jmm.0.066043-0&mimeType=html&fmt=ahah

References

  1. American Thoracic Society ( 2005;). Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. . Am J Respir Crit Care Med 171:, 388–416. [CrossRef][PubMed]
    [Google Scholar]
  2. Berthelot P., Attree I., Plésiat P., Chabert J., de Bentzmann S., Pozzetto B., Grattard F..Groupe d’Études des Septicémies à Pseudomonas aeruginosa ( 2003;). Genotypic and phenotypic analysis of type III secretion system in a cohort of Pseudomonas aeruginosa bacteremia isolates: evidence for a possible association between O serotypes and exo genes. . J Infect Dis 188:, 512–518. [CrossRef][PubMed]
    [Google Scholar]
  3. Chastre J., Combes A., Luyt C. E.. ( 2005;). The invasive (quantitative) diagnosis of ventilator-associated pneumonia. . Respir Care 50:, 797–807, discussion 807–812.[PubMed]
    [Google Scholar]
  4. Chenna R., Sugawara H., Koike T., Lopez R., Gibson T. J., Higgins D. G., Thompson J. D.. ( 2003;). Multiple sequence alignment with the Clustal series of programs. . Nucleic Acids Res 31:, 3497–3500. [CrossRef][PubMed]
    [Google Scholar]
  5. European Centre for Disease Prevention and Control ( 2010;). Antimicrobial resistance surveillance in Europe 2009. Annual Report of the European Antimicrobial Resistance Surveillance Network. (EARS-Net). . http://www.ecdc.europa.eu/en/publications/Publications/1011_SUR_annual_EARS_Net_2009.pdf
  6. Fagon J. Y., Chastre J., Hance A. J., Montravers P., Novara A., Gibert C.. ( 1993;). Nosocomial pneumonia in ventilated patients: a cohort study evaluating attributable mortality and hospital stay. . Am J Med 94:, 281–288. [CrossRef][PubMed]
    [Google Scholar]
  7. Faure K., Shimabukuro D., Ajayi T., Allmond L. R., Sawa T., Wiener-Kronish J. P.. ( 2003;). O-antigen serotypes and type III secretory toxins in clinical isolates of Pseudomonas aeruginosa. . J Clin Microbiol 41:, 2158–2160. [CrossRef][PubMed]
    [Google Scholar]
  8. Finney D. J.. ( 1952;). Probit Analysis: a Statistical Treatment of the Sigmoid Response Curve, , 2nd edn., vol. xiv, p. 318. New York, NY:: Cambridge University Press;.
    [Google Scholar]
  9. Horn M. P., Zuercher A. W., Imboden M. A., Rudolf M. P., Lazar H., Wu H., Hoiby N., Fas S. C., Lang A. B.. ( 2010;). Preclinical in vitro and in vivo characterization of the fully human monoclonal IgM antibody KBPA101 specific for Pseudomonas aeruginosa serotype IATS-O11. . Antimicrob Agents Chemother 54:, 2338–2344. [CrossRef][PubMed]
    [Google Scholar]
  10. Jones R. N.. ( 2010;). Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. . Clin Infect Dis 51: (Suppl. 1), S81–S87. [CrossRef][PubMed]
    [Google Scholar]
  11. Knaus W. A., Draper E. A., Wagner D. P., Zimmerman J. E.. ( 1985;). APACHE II: a severity of disease classification system. . Crit Care Med 13:, 818–829. [CrossRef][PubMed]
    [Google Scholar]
  12. Kollef K. E., Schramm G. E., Wills A. R., Reichley R. M., Micek S. T., Kollef M. H.. ( 2008;). Predictors of 30-day mortality and hospital costs in patients with ventilator-associated pneumonia attributed to potentially antibiotic-resistant Gram-negative bacteria. . Chest 134:, 281–287. [CrossRef][PubMed]
    [Google Scholar]
  13. Lam J. S., Handelsman M. Y., Chivers T. R., MacDonald L. A.. ( 1992;). Monoclonal antibodies as probes to examine serotype-specific and cross-reactive epitopes of lipopolysaccharides from serotypes O2, O5, and O16 of Pseudomonas aeruginosa. . J Bacteriol 174:, 2178–2184.[PubMed]
    [Google Scholar]
  14. Le Berre R., Nguyen S., Nowak E., Kipnis E., Pierre M., Quenee L., Ader F., Lancel S., Courcol R.. & other authors ( 2011;). Relative contribution of three main virulence factors in Pseudomonas aeruginosa pneumonia. . Crit Care Med 39:, 2113–2120. [CrossRef][PubMed]
    [Google Scholar]
  15. Liu P. V.. ( 1969;). Changes in somatic antigens of Pseudomonas aeruginosa induced by bacteriophages. . J Infect Dis 119:, 237–246. [CrossRef][PubMed]
    [Google Scholar]
  16. Liu P. V., Wang S.. ( 1990;). Three new major somatic antigens of Pseudomonas aeruginosa. . J Clin Microbiol 28:, 922–925.[PubMed]
    [Google Scholar]
  17. Liu P. V., Matsumoto H., Kusama H., Bergan T.. ( 1983;). Survey of heat-stable major somatic antigens of Pseudomonas aeruginosa. . Int J Syst Bacteriol 33:, 256–264. [CrossRef]
    [Google Scholar]
  18. Lu Q., Rouby J. J., Laterre P. F., Eggimann P., Dugard A., Giamarellos-Bourboulis E. J., Mercier E., Garbino J., Luyt C. E.. & other authors ( 2011;). Pharmacokinetics and safety of panobacumab: specific adjunctive immunotherapy in critical patients with nosocomial Pseudomonas aeruginosa O11 pneumonia. . J Antimicrob Chemother 66:, 1110–1116. [CrossRef][PubMed]
    [Google Scholar]
  19. Masuda N., Sakagawa E., Ohya S.. ( 1995;). Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa. . Antimicrob Agents Chemother 39:, 645–649. [CrossRef][PubMed]
    [Google Scholar]
  20. Millar B. C., Xu J., Moore J. E.. ( 2007;). Molecular diagnostics of medically important bacterial infections. . Curr Issues Mol Biol 9:, 21–39.[PubMed]
    [Google Scholar]
  21. Mittal R., Sharma S., Chhibber S., Aggarwal S., Gupta V., Harjai K.. ( 2010;). Correlation between serogroup, in vitro biofilm formation and elaboration of virulence factors by uropathogenic Pseudomonas aeruginosa. . FEMS Immunol Med Microbiol 58:, 237–243. [CrossRef][PubMed]
    [Google Scholar]
  22. Motoshima M., Yanagihara K., Fukushima K., Matsuda J., Sugahara K., Hirakata Y., Yamada Y., Kohno S., Kamihira S.. ( 2007;). Rapid and accurate detection of Pseudomonas aeruginosa by real-time polymerase chain reaction with melting curve analysis targeting gyrB gene. . Diagn Microbiol Infect Dis 58:, 53–58. [CrossRef][PubMed]
    [Google Scholar]
  23. Motoshima M., Yanagihara K., Yamamoto K., Morinaga Y., Matsuda J., Sugahara K., Hirakata Y., Yamada Y., Kohno S., Kamihira S.. ( 2008;). Quantitative detection of metallo-β-lactamase of blaIMP-cluster-producing Pseudomonas aeruginosa by real-time polymerase chain reaction with melting curve analysis for rapid diagnosis and treatment of nosocomial infection. . Diagn Microbiol Infect Dis 61:, 222–226. [CrossRef][PubMed]
    [Google Scholar]
  24. Secher T., Fauconnier L., Szade A., Rutschi O., Fas S. C., Ryffel B., Rudolf M. P.. ( 2011;). Anti-Pseudomonas aeruginosa serotype O11 LPS immunoglobulin M monoclonal antibody panobacumab (KBPA101) confers protection in a murine model of acute lung infection. . J Antimicrob Chemother 66:, 1100–1109. [CrossRef][PubMed]
    [Google Scholar]
  25. Sekiguchi J., Asagi T., Miyoshi-Akiyama T., Kasai A., Mizuguchi Y., Araake M., Fujino T., Kikuchi H., Sasaki S.. & other authors ( 2007;). Outbreaks of multidrug-resistant Pseudomonas aeruginosa in community hospitals in Japan. . J Clin Microbiol 45:, 979–989. [CrossRef][PubMed]
    [Google Scholar]
  26. Vincent J. L., Rello J., Marshall J., Silva E., Anzueto A., Martin C. D., Moreno R., Lipman J., Gomersall C.. & other authors ( 2009;). International study of the prevalence and outcomes of infection in intensive care units. . JAMA ( J Am Med Assoc) 302:, 2323–2329. [CrossRef][PubMed]
    [Google Scholar]
  27. Winstanley C., Kaye S. B., Neal T. J., Chilton H. J., Miksch S., Hart C. A..Microbiology Ophthalmic Group ( 2005;). Genotypic and phenotypic characteristics of Pseudomonas aeruginosa isolates associated with ulcerative keratitis. . J Med Microbiol 54:, 519–526. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.066043-0
Loading
/content/journal/jmm/10.1099/jmm.0.066043-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error