1887

Abstract

The aims of this study were to (1) conduct a national survey of identification by National Neisseria Network (NNN) reference laboratories contributing data to the Australian Gonococcal Surveillance Programme and (2) determine the prevalence in Australia of strains of lacking gene sequences commonly targeted by in-house PCR assays for confirmation of gonococcal nucleic acid amplification tests. Gonococcal clinical isolates referred to NNN laboratories for the first half of 2012 were screened using in-house real-time PCR assays targeting multicopy , pseudogene and genes. There were 2455 clinical gonococcal isolates received in the study period; 98.6 % (2420/2455) of isolates harboured all three gene targets, 0.12 % (3/2455) were -negative, 0.04 % (1/2455) -negative and 1.14 % (28/2455) -negative by PCR. Notably, no isolates were simultaneously negative for two targets. However, three isolates failed to be amplified by all three PCR methods, one isolate of which was shown to be a commensal strain by 16S rRNA sequencing. Using PCR as the reference standard the results showed that (1) identification of isolates by NNN laboratories was highly specific (99.96 %) and (2) strains of lacking gene sequences commonly targeted by in-house PCR assays are present but not widespread throughout Australia at this point in time.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.065094-0
2014-01-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/1/45.html?itemId=/content/journal/jmm/10.1099/jmm.0.065094-0&mimeType=html&fmt=ahah

References

  1. Alexander S., Ison C.. ( 2005;). Evaluation of commercial kits for the identification of Neisseria gonorrhoeae. . J Med Microbiol 54:, 827–831. [CrossRef][PubMed]
    [Google Scholar]
  2. Australian Gonococcal Surveillance Programme ( 2012;). Annual Report of the Australian Gonococcal Surveillance Programme, 2011. . http://www.health.gov.au/internet/main/publishing.nsf/Content/cda-cdi3602b.htm
  3. Australian Government, Department of Health and Ageing ( 2012;). Communicable disease data. http://www9.health.gov.au/cda/source/cda-index.cfm
  4. Bennett J. S., Jolley K. A., Sparling P. F., Saunders N. J., Hart C. A., Feavers I. M., Maiden M. C.. ( 2007;). Species status of Neisseria gonorrhoeae: evolutionary and epidemiological inferences from multilocus sequence typing. . BMC Biol 5:, 35. [CrossRef][PubMed]
    [Google Scholar]
  5. Bruisten S. M., Noordhoek G. T., van den Brule A. J., Duim B., Boel C. H., El-Faouzi K., du Maine R., Mulder S., Luijt D., Schirm J.. ( 2004;). Multicenter validation of the cppB gene as a PCR target for detection of Neisseria gonorrhoeae. . J Clin Microbiol 42:, 4332–4334. [CrossRef][PubMed]
    [Google Scholar]
  6. Eastick K., Winter A., Jamdar S.. ( 2012;). Identification of Neisseria gonorrhoeae isolates with a recombinant porA gene in Scotland, United Kingdom, 2010 to 2011. . Eur Surveill 17:, 20101.[PubMed]
    [Google Scholar]
  7. Fjeldsøe-Nielsen H., Unemo M., Fredlund H., Hjorth S. V., Berthelsen L. M., Palmer H. M., Friis-Møller A.. ( 2005;). Phenotypic and genotypic characterization of prolyliminopeptidase-negative Neisseria gonorrhoeae isolates in Denmark. . Eur J Clin Microbiol Infect Dis 24:, 280–283. [CrossRef][PubMed]
    [Google Scholar]
  8. Geraats-Peters C. W., Brouwers M., Schneeberger P. M., van der Zanden A. G., Bruisten S. M., Weers-Pothoff G., Boel C. H., van den Brule A. J., Harmsen H. G., Hermans M. H.. ( 2005;). Specific and sensitive detection of Neisseria gonorrhoeae in clinical specimens by real-time PCR. . J Clin Microbiol 43:, 5653–5659. [CrossRef][PubMed]
    [Google Scholar]
  9. Goire N., Nissen M. D., LeCornec G. M., Sloots T. P., Whiley D. M.. ( 2008;). A duplex Neisseria gonorrhoeae real-time polymerase chain reaction assay targeting the gonococcal porA pseudogene and multicopy opa genes. . Diagn Microbiol Infect Dis 61:, 6–12. [CrossRef][PubMed]
    [Google Scholar]
  10. Golparian D., Johansson E., Unemo M.. ( 2012;). Clinical Neisseria gonorrhoeae isolate with a N. meningitidis porA gene and no prolyliminopeptidase activity, Sweden, 2011: danger of false-negative genetic and culture diagnostic results. . Eur Surveill 17:,20102.[PubMed]
    [Google Scholar]
  11. Ho B. S., Feng W. G., Wong B. K., Egglestone S. I.. ( 1992;). Polymerase chain reaction for the detection of Neisseria gonorrhoeae in clinical samples. . J Clin Pathol 45:, 439–442. [CrossRef][PubMed]
    [Google Scholar]
  12. Ison C. A., Golparian D., Saunders P., Chisholm S., Unemo M.. ( 2013;). Evolution of Neisseria gonorrhoeae is a continuing challenge for molecular detection of gonorrhoea: false negative gonococcal porA mutants are spreading internationally. . Sex Transm Infect 89:, 197–201. [CrossRef][PubMed]
    [Google Scholar]
  13. Janda W. H., Knapp J. S.. ( 2003;). Neisseria and Moraxella catarrhalis. . In Manual of Clinical Microbiology, , 8th edn., pp. 585–608. Edited by Murray P. R., Baron E. J., Jorgensen J. H., Pfaller M. A., Yolken R. H... Washington DC:: American Society for Microbiology;. [CrossRef][PubMed]
    [Google Scholar]
  14. Kugelman G., Tapsall J. W., Goire N., Syrmis M. W., Limnios A., Lambert S. B., Nissen M. D., Sloots T. P., Whiley D. M.. ( 2009;). Simple, rapid, and inexpensive detection of Neisseria gonorrhoeae resistance mechanisms using heat-denatured isolates and SYBR green-based real-time PCR. . Antimicrob Agents Chemother 53:, 4211–4216. [CrossRef][PubMed]
    [Google Scholar]
  15. Lum G., Freeman K., Nguyen N. L., Limnios E. A., Tabrizi S. N., Carter I., Chambers I. W., Whiley D. M., Sloots T. P.. & other authors ( 2005;). A cluster of culture positive gonococcal infections but with false negative cppB gene based PCR. . Sex Transm Infect 81:, 400–402. [CrossRef][PubMed]
    [Google Scholar]
  16. Mavroidi A., Tzelepi E., Siatravani E., Godoy D., Miriagou V., Spratt B. G.. ( 2011;). Analysis of emergence of quinolone-resistant gonococci in Greece by combined use of Neisseria gonorrhoeae multiantigen sequence typing and multilocus sequence typing. . J Clin Microbiol 49:, 1196–1201. [CrossRef][PubMed]
    [Google Scholar]
  17. Smith D. W., Tapsall J. W., Lum G.. ( 2005;). Guidelines for the use and interpretation of nucleic acid detection tests for Neisseria gonorrhoeae in Australia: a position paper on behalf of the Public Health Laboratory Network. . Commun Dis Intell Q Rep 29:, 358–365.[PubMed]
    [Google Scholar]
  18. Tapsall J. W.. ( 1990;). Use of a quality assurance scheme in a long-term multicentric study of antibiotic susceptibility of Neisseria gonorrhoeae. . Genitourin Med 66:, 8–13.[PubMed]
    [Google Scholar]
  19. Tapsall J. W.. ( 2001;). Antimicrobial Resistance in Neisseria gonorrhoeae. Sydney, Australia:: WHO Collaborating Centre for STD and HIV;. http://www.who.int/drugresistance/Antimicrobial_resistance_in_Neisseria_gonorrhoeae.pdf
    [Google Scholar]
  20. Tapsall J. W., Ray S., Limnios A.. ( 2010;). Characteristics and population dynamics of mosaic penA allele-containing Neisseria gonorrhoeae isolates collected in Sydney, Australia, in 2007–2008. . Antimicrob Agents Chemother 54:, 554–556. [CrossRef][PubMed]
    [Google Scholar]
  21. Unemo M., Palmer H. M., Blackmore T., Herrera G., Fredlund H., Limnios A., Nguyen N., Tapsall J.. ( 2007;). Global transmission of prolyliminopeptidase-negative Neisseria gonorrhoeae strains: implications for changes in diagnostic strategies. . Sex Transm Infect 83:, 47–51. [CrossRef][PubMed]
    [Google Scholar]
  22. Unemo M., Fasth O., Fredlund H., Limnios A., Tapsall J.. ( 2009;). Phenotypic and genetic characterization of the 2008 WHO Neisseria gonorrhoeae reference strain panel intended for global quality assurance and quality control of gonococcal antimicrobial resistance surveillance for public health purposes. . J Antimicrob Chemother 63:, 1142–1151. [CrossRef][PubMed]
    [Google Scholar]
  23. Wang X. W., Zhang L., Jin L. Q., Jin M., Shen Z. Q., An S., Chao F. H., Li J. W.. ( 2007;). Development and application of an oligonucleotide microarray for the detection of food-borne bacterial pathogens. . Appl Microbiol Biotechnol 76:, 225–233. [CrossRef][PubMed]
    [Google Scholar]
  24. Whiley D. M., Tapsall J. W., Sloots T. P.. ( 2006;). Nucleic acid amplification testing for Neisseria gonorrhoeae: an ongoing challenge. . J Mol Diagn 8:, 3–15. [CrossRef][PubMed]
    [Google Scholar]
  25. Whiley D. M., Garland S. M., Harnett G., Lum G., Smith D. W., Tabrizi S. N., Sloots T. P., Tapsall J. W.. ( 2008;). Exploring ‘best practice’ for nucleic acid detection of Neisseria gonorrhoeae. . Sex Health 5:, 17–23. [CrossRef][PubMed]
    [Google Scholar]
  26. Whiley D. M., Limnios A., Moon N. J., Gehrig N., Goire N., Hogan T., Lam A., Jacob K., Lambert S. B.. & other authors ( 2011;). False-negative results using Neisseria gonorrhoeae porA pseudogene PCR – a clinical gonococcal isolate with an N. meningitidis porA sequence, Australia, March 2011. . Eur Surveill 16:, 19874.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.065094-0
Loading
/content/journal/jmm/10.1099/jmm.0.065094-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error