1887

Abstract

The emergence of pan-resistance in bacterial pathogens poses a threat to human health. Carbapenem-resistant has emerged as a serious challenge, causing nosocomial infection and community-acquired outbreaks in hospitals globally, including in Pakistan. We collected 90 isolates from patients with secondary or nosocomial infections from different hospitals in Pakistan and screened for carbapenem-resistant strains. Of the 90 isolates, 59 were resistant to carbapenems. Among oxacillinase -encoding genes, -like was common in all isolates, including in combination with -like in 14 isolates; however, -like and -like were completely absent. Among metallo-β-lactamase-encoding genes, only was found in one isolate, while the other three genes, , and were completely absent. None of the isolates was found to harbour the gene. The isolates were also tested for susceptibilities to a panel of different antibiotics belonging to several classes. Of all the drugs tested, tigecycline was the most effective with 80 % sensitivity amongst isolates, followed by colistin with 50 % sensitivity. Three categories of resistance were found in these isolates: extreme drug resistance in 26, pan-drug resistance in 19 and multidrug resistance in 87 isolates. The isolates exhibited a high resistance to cephalosporins, trimethoprim–sulfamethoxazole and β-lactam antibiotics, followed by tetracycline and β-lactam/β-lactam inhibitor combination, fluoroquinolone and aminoglycosides. The results show a prominent level of antibiotic-resistance phenotypes in and strongly suggest the need for full-scale national surveillance of carbapenem-resistant with particular emphasis on the newly identified NDM-1 (New Delhi metallo-β-lactamase-1).

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.063925-0
2014-01-01
2021-01-26
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/1/50.html?itemId=/content/journal/jmm/10.1099/jmm.0.063925-0&mimeType=html&fmt=ahah

References

  1. Bogaerts P., Rezende de Castro R., Roisin S., Deplano A., Huang T. D., Hallin M., Denis O., Glupczynski Y. 2012; Emergence of NDM-1-producing Acinetobacter baumannii in Belgium. J Antimicrob Chemother 67(6):1552–1553 [CrossRef]
    [Google Scholar]
  2. Bonnet R. 2004; Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 48:1–14 [CrossRef][PubMed]
    [Google Scholar]
  3. Boulanger A., Naas T., Fortineau N., Figueiredo S., Nordmann P. 2012; NDM-1-producing Acinetobacter baumannii from Algeria. Antimicrob Agents Chemother 56:2214–2215 [CrossRef][PubMed]
    [Google Scholar]
  4. Carvalho K. R., Carvalho-Assef A. P., Santos L. G., Pereira M. J., Asensi M. D. 2011; Occurrence of blaOXA-23 gene in imipenem-susceptible Acinetobacter baumannii. Mem Inst Oswaldo Cruz 106:505–506 [CrossRef][PubMed]
    [Google Scholar]
  5. Chen Y., Zhou Z., Jiang Y., Yu Y. 2011; Emergence of NDM-1-producing Acinetobacter baumannii in China. J Antimicrob Chemother 66:1255–1259 [CrossRef][PubMed]
    [Google Scholar]
  6. CLSI 2011 Performance Standards for Antimicrobial Susceptibility Testing 21st Informational Supplement M100-S21 Wayne, PA: Clinical Laboratory Standards Institute;
    [Google Scholar]
  7. Cornaglia G., Giamarellou H., Rossolini G. M. 2011; Metallo-β-lactamases: a last frontier for β-lactams?. Lancet Infect Dis 11:381–393 [CrossRef][PubMed]
    [Google Scholar]
  8. Dijkshoorn L., Nemec A., Seifert H. 2007; An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol 5:939–951 [CrossRef][PubMed]
    [Google Scholar]
  9. Evans B. A., Hamouda A., Abbasi S. A., Khan F. A., Amyes S. G. 2011; High prevalence of unrelated multidrug-resistant Acinetobacter baumannii isolates in Pakistani military hospitals. Int J Antimicrob Agents 37:580–581 [CrossRef][PubMed]
    [Google Scholar]
  10. Habeeb M. A., Haque A., Nematzadeh S., Iversen A., Giske C. G. 2013; High prevalence of 16S rRNA methylase RmtB among CTX-M extended-spectrum β-lactamase-producing Klebsiella pneumoniae from Islamabad, Pakistan. Int J Antimicrob Agents 41:524–526 [CrossRef][PubMed]
    [Google Scholar]
  11. Hasan B., Sandegren L., Melhus A., Drobni M., Hernandez J., Waldenström J., Alam M., Olsen B. 2012; Antimicrobial drug-resistant Escherichia coli in wild birds and free-range poultry, Bangladesh. Emerg Infect Dis 18:2055–2058 [CrossRef][PubMed]
    [Google Scholar]
  12. Irfan S., Zafar A., Guhar D., Ahsan T., Hasan R. 2008; Metallo-β-lactamase-producing clinical isolates of Acinetobacter species and Pseudomonas aeruginosa from intensive care unit patients of a tertiary care hospital. Indian J Med Microbiol 26:243–245 [CrossRef][PubMed]
    [Google Scholar]
  13. Irfan S., Turton J. F., Mehraj J., Siddiqui S. Z., Haider S., Zafar A., Memon B., Afzal O., Hasan R. 2011; Molecular and epidemiological characterisation of clinical isolates of carbapenem-resistant Acinetobacter baumannii from public and private sector intensive care units in Karachi, Pakistan. J Hosp Infect 78:143–148 [CrossRef][PubMed]
    [Google Scholar]
  14. Jones R. N., Ferraro M. J., Reller L. B., Schreckenberger P. C., Swenson J. M., Sader H. S. 2007; Multicenter studies of tigecycline disk diffusion susceptibility results for Acinetobacter spp. J Clin Microbiol 45:227–230 [CrossRef][PubMed]
    [Google Scholar]
  15. Kaleem F., Usman J., Hassan A., Khan A. 2010; Frequency and susceptibility pattern of metallo-β-lactamase producers in a hospital in Pakistan. J Infect Dev Ctries 4:810–813 [CrossRef][PubMed]
    [Google Scholar]
  16. Kumarasamy K. K., Toleman M. A., Walsh T. R., Bagaria J., Butt F., Balakrishnan R., Chaudhary U., Doumith M., Giske C. G.& other authors ( 2010; Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10:597–602 [CrossRef][PubMed]
    [Google Scholar]
  17. La Scola B., Raoult D. 2004; Acinetobacter baumannii in human body louse. Emerg Infect Dis 10:1671–1673 [CrossRef][PubMed]
    [Google Scholar]
  18. Lee K., Lim Y. S., Yong D., Yum J. H., Chong Y. 2003; Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 41:4623–4629 [CrossRef][PubMed]
    [Google Scholar]
  19. Magiorakos A. P., Srinivasan A., Carey R. B., Carmeli Y., Falagas M. E., Giske C. G., Harbarth S., Hindler J. F., Kahlmeter G.& other authors ( 2012; Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281 [CrossRef][PubMed]
    [Google Scholar]
  20. Mendes R. E., Kiyota K. A., Monteiro J., Castanheira M., Andrade S. S., Gales A. C., Pignatari A. C., Tufik S. 2007; Rapid detection and identification of metallo-β-lactamase-encoding genes by multiplex real-time PCR assay and melt curve analysis. J Clin Microbiol 45:544–547 [CrossRef][PubMed]
    [Google Scholar]
  21. Mugnier P. D., Poirel L., Naas T., Nordmann P. 2010; Worldwide dissemination of the blaOXA-23 carbapenemase gene of Acinetobacter baumannii. Emerg Infect Dis 16:35–40 [CrossRef][PubMed]
    [Google Scholar]
  22. Nemec A., Krizova L. 2012; Carbapenem-resistant Acinetobacter baumannii carrying the NDM-1 gene, Czech Republic, 2011. Euro Surveill 17:pii20121[PubMed]
    [Google Scholar]
  23. Nordmann P., Naas T., Poirel L. 2011; Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 17:1791–1798 [CrossRef][PubMed]
    [Google Scholar]
  24. Perry J. D., Naqvi S. H., Mirza I. A., Alizai S. A., Hussain A., Ghirardi S., Orenga S., Wilkinson K., Woodford N.& other authors ( 2011; Prevalence of faecal carriage of Enterobacteriaceae with NDM-1 carbapenemase at military hospitals in Pakistan, and evaluation of two chromogenic media. J Antimicrob Chemother 66:2288–2294 [CrossRef][PubMed]
    [Google Scholar]
  25. Pitout J. D., Hossain A., Hanson N. D. 2004; Phenotypic and molecular detection of CTX-M-β-lactamases produced by Escherichia coli and Klebsiella spp. J Clin Microbiol 42:5715–5721 [CrossRef][PubMed]
    [Google Scholar]
  26. Poirel L., Nordmann P. 2006; Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect 12:826–836 [CrossRef][PubMed]
    [Google Scholar]
  27. Rolain J. M., Parola P., Cornaglia G. 2010; New Delhi metallo-β-lactamase (NDM-1): towards a new pandemia?. Clin Microbiol Infect 16:1699–1701 [CrossRef][PubMed]
    [Google Scholar]
  28. Walsh T. R. 2010; Emerging carbapenemases: a global perspective. Int J Antimicrob Agents 36:Suppl 3S8–S14 [CrossRef][PubMed]
    [Google Scholar]
  29. Walsh T. R., Toleman M. A. 2012; The emergence of pan-resistant Gram-negative pathogens merits a rapid global political response. J Antimicrob Chemother 67:1–3 [CrossRef][PubMed]
    [Google Scholar]
  30. Woodford N., Ellington M. J., Coelho J. M., Turton J. F., Ward M. E., Brown S., Amyes S. G., Livermore D. M. 2006; Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 27:351–353 [CrossRef][PubMed]
    [Google Scholar]
  31. Zarrilli R., Giannouli M., Tomasone F., Triassi M., Tsakris A. 2009; Carbapenem resistance in Acinetobacter baumannii: the molecular epidemic features of an emerging problem in health care facilities. J Infect Dev Ctries 3:335–341 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.063925-0
Loading
/content/journal/jmm/10.1099/jmm.0.063925-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error