1887

Abstract

This study assessed the accuracy of bacterial and yeast identification using the VITEK MS, and the time to reporting of isolates before and after its implementation in routine clinical practice. Three hundred and sixty-two isolates of bacteria and yeast, consisting of a variety of clinical isolates and American Type Culture Collection strains, were tested. Results were compared with reference identifications from the VITEK 2 system and with 16S rRNA sequence analysis. The VITEK MS provided an acceptable identification to species level for 283 (78 %) isolates. Considering organisms for which genus-level identification is acceptable for routine clinical care, 315 isolates (87 %) had an acceptable identification. Six isolates (2 %) were identified incorrectly, five of which were species. Finally, the time for reporting the identifications was decreased significantly after implementation of the VITEK MS for a total mean reduction in time of 10.52 h (<0.0001). Overall, accuracy of the VITEK MS was comparable or superior to that from the VITEK 2. The findings were also comparable to other studies examining the accuracy of the VITEK MS, although differences exist, depending on the diversity of species represented as well as on the versions of the databases used. The VITEK MS can be incorporated effectively into routine use in a clinical microbiology laboratory and future expansion of the database should provide improved accuracy for the identification of micro-organisms.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.063636-0
2014-02-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/2/235.html?itemId=/content/journal/jmm/10.1099/jmm.0.063636-0&mimeType=html&fmt=ahah

References

  1. Bader O. , Weig M. , Taverne-Ghadwal L. , Lugert R. , Gross U. , Kuhns M. . ( 2011; ). Improved clinical laboratory identification of human pathogenic yeasts by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. . Clin Microbiol Infect 17:, 1359–1365.[PubMed] [CrossRef]
    [Google Scholar]
  2. Barreau M. , Pagnier I. , La Scola B. . ( 2013; ). Improving the identification of anaerobes in the clinical microbiology laboratory through MALDI-TOF mass spectrometry. . Anaerobe 22:, 123–125. [CrossRef] [PubMed]
    [Google Scholar]
  3. Benagli C. , Rossi V. , Dolina M. , Tonolla M. , Petrini O. . ( 2011; ). Matrix-assisted laser desorption ionization-time of flight mass spectrometry for the identification of clinically relevant bacteria. . PLoS ONE 6:, e16424. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bizzini A. , Durussel C. , Bille J. , Greub G. , Prod’hom G. . ( 2010; ). Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. . J Clin Microbiol 48:, 1549–1554. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bizzini A. , Jaton K. , Romo D. , Bille J. , Prod’hom G. , Greub G. . ( 2011; ). Matrix-assisted laser desorption ionization-time of flight mass spectrometry as an alternative to 16S rRNA gene sequencing for identification of difficult-to-identify bacterial strains. . J Clin Microbiol 49:, 693–696. [CrossRef] [PubMed]
    [Google Scholar]
  6. Carbonnelle E. , Grohs P. , Jacquier H. , Day N. , Tenza S. , Dewailly A. , Vissouarn O. , Rottman M. , Herrmann J. L. . & other authors ( 2012; ). Robustness of two MALDI-TOF mass spectrometry systems for bacterial identification. . J Microbiol Methods 89:, 133–136. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cherkaoui A. , Hibbs J. , Emonet S. , Tangomo M. , Girard M. , Francois P. , Schrenzel J. . ( 2010; ). Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. . J Clin Microbiol 48:, 1169–1175. [CrossRef] [PubMed]
    [Google Scholar]
  8. Dhiman N. , Hall L. , Wohlfiel S. L. , Buckwalter S. P. , Wengenack N. L. . ( 2011; ). Performance and cost analysis of MALDI-TOF mass spectrometry for routine identification of yeast. . J Clin Microbiol 49:, 1614–1616. [CrossRef] [PubMed]
    [Google Scholar]
  9. Global Customer Service ( 2010; ). Microbiology Customer Training Manual: [email protected] Helpful Hints and Technical Advices. Durham, NC:: bioMeriéux;, 69280 Marcy l'Etoile - France. www.biomerieux.com.
    [Google Scholar]
  10. Jamal W. Y. , Shahin M. , Rotimi V. O. . ( 2013; ). Comparison of two matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry methods and API 20AN for identification of clinically relevant anaerobic bacteria. . J Med Microbiol 62:, 540–544. [CrossRef] [PubMed]
    [Google Scholar]
  11. Justesen U. S. , Holm A. , Knudsen E. , Andersen L. B. , Jensen T. G. , Kemp M. , Skov M. N. , Gahrn-Hansen B. , Møller J. K. . ( 2011; ). Species identification of clinical isolates of anaerobic bacteria: a comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems. . J Clin Microbiol 49:, 4314–4318. [CrossRef] [PubMed]
    [Google Scholar]
  12. Knoester M. , van Veen S. Q. , Claas E. C. J. , Kuijper E. J. . ( 2012; ). Routine identification of clinical isolates of anaerobic bacteria: matrix-assisted laser desorption ionization-time of flight mass spectrometry performs better than conventional identification methods. . J Clin Microbiol 50:, 1504. [CrossRef] [PubMed]
    [Google Scholar]
  13. Markland S. M. , Farkas D. F. , Kniel K. E. , Hoover D. G. . ( 2013; ). Pathogenic psychrotolerant sporeformers: an emerging challenge for low-temperature storage of minimally processed foods. . Foodborne Pathog Dis 10:, 413–419. [CrossRef] [PubMed]
    [Google Scholar]
  14. Marko D. C. , Saffert R. T. , Cunningham S. A. , Hyman J. , Walsh J. , Arbefeville S. , Howard W. , Pruessner J. , Safwat N. . & other authors ( 2012; ). Evaluation of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of nonfermenting Gram-negative bacilli isolated from cultures from cystic fibrosis patients. . J Clin Microbiol 50:, 2034–2039. [CrossRef] [PubMed]
    [Google Scholar]
  15. Martiny D. , Busson L. , Wybo I. , El Haj R. A. , Dediste A. , Vandenberg O. . ( 2012; ). Comparison of the Microflex LT and Vitek MS systems for routine identification of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. . J Clin Microbiol 50:, 1313–1325. [CrossRef] [PubMed]
    [Google Scholar]
  16. Murray P. R. . ( 2010; ). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: usefulness for taxonomy and epidemiology. . Clin Microbiol Infect 16:, 1626–1630. [CrossRef] [PubMed]
    [Google Scholar]
  17. Rosenvinge F. S. , Dzajic E. , Knudsen E. , Malig S. , Andersen L. B. , Løvig A. , Arendrup M. C. , Jensen T. G. , Gahrn-Hansen B. , Kemp M. . ( 2013; ). Performance of matrix-assisted laser desorption-time of flight mass spectrometry for identification of clinical yeast isolates. . Mycoses 56:, 229–235. [CrossRef] [PubMed]
    [Google Scholar]
  18. Seng P. , Drancourt M. , Gouriet F. , La Scola B. , Fournier P.-E. , Rolain J. M. , Raoult D. . ( 2009; ). Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. . Clin Infect Dis 49:, 543–551. [CrossRef] [PubMed]
    [Google Scholar]
  19. Sogawa K. , Watanabe M. , Sato K. , Segawa S. , Miyabe A. , Murata S. , Saito T. , Nomura F. . ( 2012; ). Rapid identification of microorganisms by mass spectrometry: improved performance by incorporation of in-house spectral data into a commercial database. . Anal Bioanal Chem 403:, 1811–1822. [CrossRef] [PubMed]
    [Google Scholar]
  20. Tan K. E. , Ellis B. C. , Lee R. , Stamper P. D. , Zhang S. X. , Carroll K. C. . ( 2012; ). Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. . J Clin Microbiol 50:, 3301–3308. [CrossRef] [PubMed]
    [Google Scholar]
  21. van Veen S. Q. , Claas E. C. J. , Kuijper E. J. . ( 2010; ). High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. . J Clin Microbiol 48:, 900–907. [CrossRef] [PubMed]
    [Google Scholar]
  22. Veloo A. C. M. , Knoester M. , Degener J. E. , Kuijper E. J. . ( 2011; ). Comparison of two matrix-assisted laser desorption ionisation-time of flight mass spectrometry methods for the identification of clinically relevant anaerobic bacteria. . Clin Microbiol Infect 17:, 1501–1506. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.063636-0
Loading
/content/journal/jmm/10.1099/jmm.0.063636-0
Loading

Data & Media loading...

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error